Article in journal

Applying machine learning methods to better understand, model and estimate mass concentrations of traffic-related pollutants at a typical street canyon

Narrow city streets surrounded by tall buildings are favorable to inducing a general effect of a “canyon” in which pollutants strongly accumulate in a relatively small area because of weak or inexistent ventilation. In this study, levels of nitrogen-oxide (NO2), elemental carbon (EC) and organic carbon (OC) mass concentrations in PM10 particles were determined to compare between seasons and different years. Daily samples were collected at one such street canyon location in the center of Zagreb in 2011, 2012 and 2013.

How Policy Decisions Affect Refugee Journeys in South Sudan: A Study Using Automated Ensemble Simulations

Forced displacement has a huge impact on society today, as more than 68 million people are forcibly displaced worldwide. Existing methods for forecasting the arrival of migrants, especially refugees, may help us to better allocate humanitarian support and protection. However, few researchers have investigated the effects of policy decisions, such as border closures, on the movement of these refugees. Recently established simulation development approaches have made it possible to conduct such a study.