
This document is issued within the frame and for the purpose of the HiDALGO project. This project has received funding from the EuropeanUnion’s Horizon2020 Framework Programme under Grant Agreement No. 824115. The opinions expressed and arguments employedherein do not necessarily reflect the official views of the European Commission.This document and its content are the property of the HiDALGO Consortium. All rights relevant to this document are determined by theapplicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contentsare not to be used or treated in any manner inconsistent with the rights or interests of the HiDALGO Consortium or the Partners detrimentand are not to be disclosed externally without prior written consent from the HiDALGO Partners.Each HiDALGO Partner may use this document in conformity with the HiDALGO Consortium Grant Agreement provisions.
(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement; CI:Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

HiDALGO
D3.5 Final Report on Benchmarking,

Implementation, Optimisation Strategies and
Coupling Technologies

Document Identification
Status Final Due Date 31/12/2021
Version 1.0 Submission Date 04/03/2022

Related WP WP3 Document Reference D3.5
RelatedDeliverable(s) D3.1, D3.2, D3.3, D3.4,D4.4, D5.8, D6.6 Dissemination Level (*) PU
Lead Participant PSNC Lead Author Marcin Lawenda
Contributors ICCS, BUL, KNOW,USTUTT, PLUS, SZE

ECMWF
Reviewers Tamás Tomaschek (MK)

Mark Kröll (KNOW)

Keywords:
High Performance Computing (HPC), Big Data, High Performance Data Analytics (HPDA)Benchmarking, Profiling, Scalability, Co-design, Optimization, Visualization, Couplingtechnologies

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 2 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Document Information
List of Contributors
Name Partner
Nikela Papadopoulou, Nikolaos Chalvantzis,Dimitrios Tsoumakos ICCS
Krzesimir Samborski, Łukasz Szustak, PiotrDzierżak PSNC
László Környei, Ákos Kovács,Mátyás Constans SZE
Derek Groen, Alireza Jahani BUL
Leyla Kern, Sergiy Gogolenko USTUTT
Manuela Rauch KNOW
Gregor Bankhamer PLUS
Jesús Ramos Rivas, Francisco Javier Nieto ATOS
Document History
Ver. Date Change editors Changes
0.1 15/06/2021 PSNC Created initial document, table of contents.
0.24 27/07/2021 PSNC Updated ToC and assigned responsibilities
0.3 19/10/2021 BUL, ICCS, KNOW,PSNC, SZE, USTTUT First contributions
0.5 06/12/2021 PSNC, PLUS, SZE,KNOW, MOON Updated content
0.65 14/12/2021 PLUS, PSNC, SZE Modified document structure and newcontent in ensemble scenarios, optimization
0.7 22/12/2021 USTTUT, KNOW, PSNC,SZE, BUL, ICCS Visualization, optimization, coupling, HPDA
0.75 24/12/2021 PLUS, PSNC SN coupling, data management, datasecurity, optimization (EigHist)
0.79 27/12/2021 ICCS, PLUS Co-design, SN coupling
0.84 12/01/2022 PSNC, PLUS Scalability, Optimization
0.94 03/02/2022 SZE, ICCS, PLUS, PSNC Co-design, scalability, data analytics,coupling technologies

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 3 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Document History
Ver. Date Change editors Changes
0.95 07/02/2022 PSNC Version for review
0.98 02/03/2022 ALL Version with remarks implemented
1.0 04/03/2022 ATOS FINAL VERSION TO BE SUBMITTED

Quality Control
Role Who (Partner short name) ApprovalDate
Deliverable leader Marcin Lawenda (PSNC) 02/03/2022
Quality manager Marcin Lawenda (PSNC) 02/03/2022
Project Coordinator Francisco Javier Nieto (ATOS) 04/03/2022

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 4 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Table of Contents
Document Information..2
Table of Contents...4
List of Tables..9
List of Figures...10
List of Acronyms .. 15
Executive Summary ... 17
1 Introduction..19
1.1 Purpose of the document ...19
1.2 Relation to other project work..19
1.3 Structure of the document..20

2 Co-design...21
2.1 Goal...21
2.1.1 Systems architecture and characterization ... 22
2.1.2 Co-design analysis and metrics..23

2.2 Migration Pilot ..24
2.2.1 Introduction, goals, and background...24
2.2.2 Experimental results..25
2.2.3 Overall analysis..30

2.3 Urban Air Pollution Pilot ... 30
2.3.1 Introduction, goals and background..30
2.3.2 Experimental results..31
2.3.3 Overall analysis..35

2.4 Social Networks Pilot...36
2.4.1 Introduction, goals, and background...36
2.4.2 Experimental results..37
2.4.3 Overall analysis..46

3 HPC benchmarking..47

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 5 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

3.1 Migration Pilot ..47
3.1.1 Introduction and Goal..47
3.1.2 Experimental results..48
3.1.3 Overall analysis..49

3.2 Urban Air Pollution Pilot ... 49
3.2.1 Introduction and Goal..49
3.2.2 Results..51
3.2.3 Analysis..55

3.3 Social Networks Pilot...56
3.3.1 Introduction and Goal..56
3.3.2 Experiment 1 (SN-Simulator) ...58
3.3.3 Experiment 2 (SN-Simulator) ...60
3.3.4 Experiment 3 (KPM)...62
3.3.5 Experiment 4 (KPM)...65

4 Ensemble scenarios...67
4.1 Migration pilot ..67
4.1.1 Scenario description ..67
4.1.2 Tests...69
4.1.3 Analysis..70

4.2 Urban Air Pollution..71
4.2.1 Scenario description ..71
4.2.2 Tests...72
4.2.3 Analysis..73

4.3 Social Network..73
4.3.1 Scenario description ..74
4.3.2 Tests...75
4.3.3 Analysis..77

5 Analysis and optimization...78
5.1 Migration Pilot ..78

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 6 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

5.1.1 Goal..78
5.1.2 Performance analysis and the Numba-based optimization...............................79

5.2 Urban Air Pollution Pilot ... 82
5.2.1 Goal..82
5.2.2 Analysis and conclusions..82

5.3 Social Networks Pilot...89
5.3.1 Goal..89
5.3.2 Social Network Simulator...90
5.3.3 The KPM application..97

6 HPDA analysis and developments...101
6.1 Framework and Execution Environment...101
6.2 Migration Pilot ..101
6.2.1 Simulation Output Statistical Analytics..102

6.3 Urban Air Pollution Pilot ... 106
6.3.1 Snapshot Matrix SVD...106
6.3.2 Air Quality Index..107

6.4 Social Network..110
6.4.1 Social Network Analyser..110

7 HPDA benchmarking...114
7.1 Infrastructure description...114
7.2 Migration Pilot ..115
7.2.1 Simulation Output Statistical Analytics tests...115

7.3 Urban Air Pollution Pilot ... 116
7.3.1 Snapshot Matrix SVD tests...117
7.3.2 Air Quality Indices tests ...118

7.4 Social Networks Pilot...120
7.4.1 Social Network analyser tests..120
7.4.2 Results and findings...121

8 GPGPU benchmarking and optimization...123

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 7 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

8.1 Infrastructure description...123
8.2 Benchmarking of GPGPU cards...123
8.2.1 Goal and methodology .. 123
8.2.2 Scalability tests of machine learning models...124
8.2.3 Results and findings...130

8.3 GPU ML model training optimization..131
8.3.1 Goal..131
8.3.2 Scenario description ..131
8.3.3 Tests...132
8.3.4 Analysis..136

9 Data management...138
9.1 CKAN enhancement..138
9.2 Benchmarks...139

10 Data security ...148
10.1 Vault Integration...148

11 Visualization..152
11.1 COVISE...152
11.1.1 Extension implementation...152
11.1.2 Application & Results...153
11.1.3 Benchmarking..155
11.1.4 Integration with the Portal ..157

11.2 Visualizer...158
11.2.1 AI method..158
11.2.2 Optimization..160
11.2.3 Benchmarking..161
11.2.4 Dashboard results..170

12 Coupling technologies...172
12.1 Migration Pilot ..172
12.2 Urban Air Pollution Pilot ... 173

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 8 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

12.3 Social Networks Pilot...175
12.4 Weather data..176
12.4.1 Weather data notification system...178

12.5 Sensor data ... 180
12.5.1 AIRQ sensory..180
12.5.2 Camera Data..182

12.6 Telecommunication data ..183
13 Conclusions ...187
References...189

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 9 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

List of Tables
Table 1. HiDALGO systems overview...22
Table 2. HiDALGO systems node characterization...23
Table 3. Software environment for Flee on the HiDALGO systems..25
Table 4. POP co-design metrics for Flee on different systems on a synthetic 10-10-4 graph using 2M initial
agents and 10K new agents per time step, for 10 time steps, on 8 nodes. The five metrics are Load Balance
Efficiency (LB), Communication Efficiency (CE), Parallel Efficiency (PE), Computational Scaling (CS) and Global
Efficiency (GE)..29
Table 5. Software environment for simpleFoam and pimpleFoam on the HiDALGO systems...............................31
Table 6. POP co-design metrics for pimpleFoam on a mesh of 3.4M points, for 900s in the transient simulation,
on 32 nodes. The five metrics are Load Balance Efficiency (LB), Communication Efficiency (CE), Parallel Efficiency
(PE), Computational Scaling (CS) and Global Efficiency (GE)...35
Table 7. Software environment for KPM and SN-simulator on the HiDALGO systems. ...36
Table 8. POP co-design metrics for KPM on different systems on the pokec-5000 graph using 96 intervals, 512
samples and a degree of 62, for 8 nodes. The five metrics are Load Balance Efficiency (LB), Communication
Efficiency (CE), Parallel Efficiency (PE), Computational Scaling (CS) and Global Efficiency (GE)............................45
Table 9. POP co-design metrics for SN-simulator on different systems on the NEOS dataset using 400 sources,
1000 samples and 42 as the seed, for 8 nodes. The five metrics are Load Balance Efficiency (LB), Communication
Efficiency (CE), Parallel Efficiency (PE), Computational Scaling (CS) and Global Efficiency (GE)............................45
Table 10. Software environment for Flee on the HiDALGO and PRACE systems..48
Table 11. Software specification for UAP pilot benchmarks..50
Table 12. The number of iterations in simpleFoam and the simulated time in pimpleFoam.................................50
Table 13. The number of iterations in simpleFoam and the simulated time in pimpleFoam.................................51
Table 14. Software stack for Social Networks benchmarks...58
Table 15. Software stack for Experiment 4 on Hawk...66
Table 16. The average relative difference of the Simulation Approaches for different ensemble sizes.................70
Table 17: The total execution time of the Simulation Approaches for different ensemble sizes.70
Table 18. Runtime used cores and core hours for all ensemble and normal runs for various mesh sizes..............73
Table 19. Specification of testing platforms. ...78
Table 20. Software stack for SN Simulator and KPM benchmarks...79
Table 21. Runtime for Antwerp model of 434k cells for different models on various architectures......................87
Table 22. Speedup w.r.t. real-time (real-time divided by runtime) for Antwerp model of 434k cells for different
models on various architectures..88
Table 23. Specification of testing platforms. ...89
Table 24. Software setups for SN Simulator and KPM benchmarks. ... 90
Table 25. Agent data file structure and sample values..103
Table 26. Location data file structure and sample values ... 103
Table 27. Sample output for Q2 in tabular format..106
Table 28. Sample output for Q3 in tabular format..106
Table 29. HPDA Spark cluster infrastructure details..114
Table 30. HPDA Spark cluster node details..115
Table 31. Impact of selectivity on Query Execution...120
Table 32. Characteristics of selected dataset graphs. ...120

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 10 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Table 33. Details of tested machine learning models..124
Table 34. Software stack for CKAN benchmark. ..140
Table 35. Route from PSNC to the CKAN. .. 140
Table 36. Route from PCz to the CKAN..141
Table 37. Route from HLRS to the CKAN..141
Table 38 . Endpoints of the Call Detail Record (CDR) API...184
Table 39. Parameters Endpoints..185
Table 40. Description of the plain CDRs...186
Table 41. An example of aggregated CDRs for the social network pilot..186

List of Figures
Figure 1. Comparing execution time of Flee on different systems on a synthetic 10-10-4 (left) and 50-50-4 graph
(right) using 2M initial agents and 10K new agents per time step, for 10 time steps, for different numbers of
nodes. ___25
Figure 2. Comparing speedup w.r.t. 1 node of Flee on different systems on a synthetic 10-10-4 (left) and 50-50-4
graph (right) using 2M initial agents and 10K new agents per time step, for 10 time steps, for different numbers
of nodes.___26
Figure 3. Examining the percentage of execution time spent in MPI functions of Flee on different systems on a
synthetic 10-10-4 (left) and 50-50-4 graph (right) using 2M initial agents and 10K new agents per time step, for
10 time steps, for different numbers of nodes. ___ 27
Figure 4. Examining the percentage of MPI time spent on the various MPI functions of Flee on different systems
on a synthetic 10-10-4 (left) and 50-50-4 graph (right) using 2M initial agents and 10K new agents per time
step, for 10 time steps, on 8 nodes. __27
Figure 5. Examining the percentage of total execution time spent on the various functions of Flee on different
systems on a synthetic 10-10-4 (up) and 50-50-4 graph (down) using 2M initial agents and 10K new agents per
time step, for 10 time steps, on 8 nodes.__29
Figure 6. Comparing execution times of simpleFoam (left) and pimpleFoam (right) on different systems on a
mesh of 3.4M points, for 600 timesteps in the steady simulation and 900s in the transient simulation, for
different numbers of nodes.__32
Figure 7. Comparing speedup w.r.t. 1 node of simpleFoam (left) and pimpleFoam (right) on different systems on
a mesh of 3.4M points, for 600 timesteps in the steady simulation and 900s in the transient simulation, for
different numbers of nodes.__32
Figure 8. Examining the percentage of execution time spent in MPI functions of simpleFoam (left) and
pimpleFoam (right) on different systems on a mesh of 3.4M points, for 600 timesteps in the steady simulation
and 900s in the transient simulation, for different numbers of nodes._________________________________33
Figure 9. Examining the percentage of MPI time spent on the various MPI functions of simpleFoam (left) and
pimpleFoam (right) on different systems on a mesh of 3.4M points, for 600 timesteps in the steady simulation
and 900s in the transient simulation, on 32 nodes.__33

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 11 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 10. Examining the percentage of total execution time spent on various blocks of code of simpleFoam
(left) and pimpleFoam (right) on different systems on a mesh of 3.4M points, for 600 timesteps in the steady
simulation and 900s in the transient simulation, on 32 nodes._______________________________________34
Figure 11. Comparing execution time of KPM on different systems on the pokec-5000 graph using 96 intervals,
512 samples and a degree of 62, for different numbers of nodes. ____________________________________ 37
Figure 12. Comparing execution time of SN-simulator on different systems on the NEOS dataset using 400
sources, 1000 samples and 42 as the seed, for different numbers of nodes. ____________________________ 38
Figure 13. Comparing speedup w.r.t. 1 node of KPM on different systems on the pokec-5000 graph using 96
intervals, 512 samples and a degree of 62, for different numbers of nodes. ____________________________ 39
Figure 14. Comparing speedup w.r.t. 1 node of SN-simulator on different systems on the NEOS dataset using
400 sources, 1000 samples and 42 as the seed, for different numbers of nodes._________________________39
Figure 15. Examining the percentage of execution time spent in MPI functions of KPM on different systems on
the pokec-5000 graph using 96 intervals, 512 samples and a degree of 62, for different numbers of nodes.___40
Figure 16. Examining the percentage of execution time spent in MPI functions of SN-simulator on different
systems on the NEOS dataset using 400 sources, 1000 samples and 42 as the seed, for different numbers of
nodes. ___41
Figure 17. Examining the percentage of MPI time spent on the various MPI functions of KPM on different
systems on the pokec-5000 graph using 96 intervals, 512 samples and a degree of 62, for 8 nodes. _________42
Figure 18. Examining the percentage of MPI time spent on the various MPI functions of SN-simulator on
different systems on the NEOS dataset using 400 sources, 1000 samples and 42 as the seed, for 8 nodes. ____42
Figure 19. Examining the percentage of total execution time spent on the various functions of KPM on different
systems on the pokec-5000 graph using 96 intervals, 512 samples and a degree of 62, for 8 nodes. _________44
Figure 20. Examining the percentage of total execution time spent on the various functions of SN-simulator on
different systems on the NEOS dataset using 400 sources, 1000 samples and 42 as the seed, for 8 nodes. ____44
Figure 21. Comparing execution time of Flee on different systems on a synthetic 100-100-8 graph using 100M
initial agents, for 10 time steps, for different numbers of nodes. Both axes are in logarithmic scale._________49
Figure 22. Execution time vs. number of nodes for steady (left) and transient (right) simulation of the
OpenFOAM Air Quality Dispersion Model for small mesh size on different architectures. Both axes use
logarithmic scale. __52
Figure 23. Per node Speedup (left) and Parallel efficiency (right) vs. number of nodes for transient simulation of
the OpenFOAM Air Quality Dispersion Model for small mesh size on different architectures. Both axes use
logarithmic scale. __52
Figure 24. Execution time vs. number of nodes for steady (left) and transient (right) simulation of the
OpenFOAM Air Quality Dispersion Model for middle mesh size on different architectures. Both axes use
logarithmic scale. __53
Figure 25. Per node Speedup (left) and Parallel efficiency (right) vs. number of nodes for transient simulation of
the OpenFOAM Air Quality Dispersion Model for middle mesh size on different architectures. Both axes use
logarithmic scale. __53
Figure 26. Execution time vs. number of nodes for steady (left) and transient (right) simulation of the
OpenFOAM Air Quality Dispersion Model for large mesh size on different architectures. Both axes use
logarithmic scale. __54
Figure 27. Per node Speedup (left) and Parallel efficiency (right) vs. number of nodes for transient simulation of
the OpenFOAM Air Quality Dispersion Model for large mesh size on different architectures. Both axes use
logarithmic scale. __54
Figure 28. Per core cell count on various architectures and mesh sizes.________________________________56

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 12 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 29. Comparison of the running times of our new (v0.3) and old (v0.2) SN-Simulator on Hawk and
SuperMUC-NG. On the left, we considered the neos data set. On the right, the fpoe data set.______________59
Figure 30. Time required by v0.3 of our SN-Simulator for the simulation of the covid19 and fpoe data sets on
Hawk, SuperMUC-NG and Altair for an increasing number of compute nodes. __________________________60
Figure 31. Speed-up of v0.3 of our SN-Simulator in comparison with the linear speed-up denoted by “linear” _ 61
Figure 32. Core hour budget required to complete the simulation when supplied with a certain amount of cores.
On the x-axis we plot the number of CPU nodes involved in the simulation. On the y-axis the overall time
required times the number of cores used. ___61
Figure 33. Time required to compute the eigenvalue histogram for an increasing amount of compute nodes on
Hawk, SuperMUC-NG and Altair. Comparison of our new version (v0.2) to the old version (v0.1) of our KPM
application.___63
Figure 34. Speed-Up of v0.2 of the KPM application. The linear speed-up is denoted by “linear” and stated for
comparison. __ 63
Figure 35. Core hours required to perform complete the eigenvalue histogram computation when supplied a
certain amount of cores. Comparison of the new (v0.2) and old (v0.1) version of our KPM application._______64
Figure 36. Weak scaling experiment. Time to compute the eigenvalue histogram with an increasing number of
intervals for an increasing amount of compute nodes. Experiments performed on Hawk with KPM v0.3. _____ 66
Figure 37. Multiscale Migration Simulation Workflow Diagram. . Multiscale simulation (yellow boxes) and
coupling with Flare (red box) are new models for generating realistic progressions and forecasting how conflicts
evolve.___68
Figure 38. Wind profile components: west-east (left) and north-south (right) depending on height for various
ensemble scenarios (grey and black) and the normal scenario (red). The minimum and maximum covering
curves for ensemble scenarios are also plotted (green). Also, the top of the simulation domain is also shown at
500 meters (purple).__72
Figure 39. Grid search example. The search space is partitioned into a 9x9 grid and at each point a pair of
parameters is evaluated. __ 74
Figure 40. Scalability of the grid search approach for the fpoe dataset on SuperMUC-NG._________________76
Figure 41. MAPE of the fpoe data set for each of the 3 experiments.__________________________________77
Figure 42. Evaluation of the Numba-based optimization applied for the flee application: a) performance
comparison for studied application with enabled and disabled Numba optimizations, b) Partial performance
gain measured for a given Kernel separately, and c) the percentage of total execution time for selected
measured for the basic version of the application. __ 81
Figure 43. Performance comparison between RapidCDF and OpenFOAM obtained for different numbers of
devices and a variety of domain sizes: a) Computation time [s] (left) and b) Strong scaling speedup (right).___84
Figure 44. Runtime for Antwerp model of 434k cells for different models on various architectures.__________88
Figure 45. General execution schema for SN Simulator. __ 91
Figure 46. Performance analysis of different versions of SN Simulator. ________________________________ 92
Figure 47. Workload distributions between MPI workers obtained for different versions of SN Simulator. ____ 93
Figure 48. Performance gain obtained for SN Simulator with a proposed order of tasks execution in comparison
to the basic version. __ 94
Figure 49. Impact of workload (task) size on performance.__95
Figure 50. Performance gain (left) and optimal sample split parameter (right). _________________________ 96
Figure 51. Performance gain obtained for SN Simulator with enabled NUMBA-based optimizations. ________ 97

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 13 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 52. Memory trace of the KPM application execution with a) one, b) two, and c) four subgroups of MPI
processes per node obtained for the system with 2x Intel Xeon Platinum 8268 configured as four NUMA
domains (every sample is averaged over 1~second interval).__98
Figure 53. Performance results obtained for the NUMA aware version of the KPM application in comparison to
the basic version. ___ 100
Figure 54. The criteria used for checking validity when aggregating data and calculating statistical parameters
according to Directive 2008/50/EC of the European Parliament. ____________________________________108
Figure 55. Visualization of retweet tree with distances to particular followers _________________________ 111
Figure 56. Example of a retweet tree__112
Figure 57. Migration Pilot Analytics performance on Spark using varying numbers of executors.___________116
Figure 58. SVD performance using varying the input data sizes._____________________________________117
Figure 59. SVD performance using varying numbers of spark executors.______________________________118
Figure 60. Air Quality Analytics performance with varying numbers of Spark executors. _________________ 119
Figure 61. Performance of social networks analyser on selected datasets. ____________________________ 121
Figure 62. Performance speedup of social networks analyser on selected datasets. _____________________122
Figure 63. Training performance for ResNext neural model on selected architectures.___________________125
Figure 64. Training performance speedup for ResNext neural model on selected architectures.____________126
Figure 65. Training performance for VGG19 neural model on selected architectures.____________________127
Figure 66. Training performance speedup for VGG19 neural model on selected architectures._____________128
Figure 67. Training performance for Mobilenet neural model on selected architectures. _________________ 129
Figure 68. Training performance speedup for Mobilenet neural model on selected architectures.__________130
Figure 69. Training run without parallelism seen on GPU profiler tool. _______________________________ 133
Figure 70. Training run with data parallelism seen on GPU profiler tool.______________________________134
Figure 71. Training run with distributed data parallelism seen on GPU profiler tool._____________________134
Figure 72. Training run with DDP and round-robin workload distribution seen on GPU profiler tool. ________135
Figure 73. Training run with DDP and distributed sampler seen on GPU profiler tool.____________________136
Figure 74. Performance of different training strategies.___137
Figure 75. The resource file100M.bin uploaded by GridFTP.__139
Figure 76. Europe map with location of data centres taking a part in testing procedure: Poznań (PSNC),
Częstochowa (PCz) and Stuttgart (HLRS). __ 142
Figure 77. Upload time from PSNC to PSNC. __ 143
Figure 78. Upload time from PCz to PSNC.__144
Figure 79. Upload time from HLRS to PSNC. __ 144
Figure 80. CKAN datastore creation time. __145
Figure 81. The results of sequential and in parallel upload data using GridFTP._________________________146
Figure 82. The results of sequential and in parallel upload data using SCP.____________________________146
Figure 83. The results of sequential and in parallel upload data using CKAN API. _______________________ 147
Figure 84. A sequence diagram of a user's secondary credentials in the Vault. _________________________151
Figure 85. The module map in COVISE for visualizing UAP simulation data. Coloured boxes indicate: cutting
surface (green), iso surface (yellow), streamlines (rose), vector field (blue). ___________________________ 153
Figure 86. Screenshot of the interactive visualization. Iso surface for NOx are shown along with a city model
(Stuttgart building scans). __ 154
Figure 87. The same model from a different perspective: LoD 2 building models and streamlines are added
(Stuttgart). __ 154
Figure 88. Execution time of cold-start task for different mesh resolutions.____________________________156

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 14 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 89. Processing time per module for different mesh resolutions. _______________________________ 157
Figure 90. Access to COVISE from the HiDALGO Portal.__158
Figure 91. AI-Wizard enabling users to select analytical goals and configure workflows__________________159
Figure 92. Results from a clustering (left chart) and outlier detection (right chart) method using the AI-Wizard in
Visualizer for NEOS twitter data. ___160
Figure 93. Average time in seconds for loading a CSV file in Visualizer depending on the number of data rows -
blue: initial benchmarking for local files, red: new benchmarking for local files, yellow: new benchmarking for
remote files. ___ 162
Figure 94. Average time in seconds for loading a pre-configured dashboard in Visualizer depending on the
number of data rows - blue: initial benchmarking for local files, red: new benchmarking for local files. _____ 162
Figure 95. Scatter plot showing sum of sentiments for NEOS (x-axis) and FPÖ (y-axis) for different twitter
conversations (colour).___166
Figure 96. Parallel coordinates showing connections between tweet types, conversations and sentiments for
NEOS and FPÖ__166
Figure 97. Heat maps showing sum of all sentiments (colour) for different tweet types for each twitter
conversation (left charts) and number (colour) of sentiments for each tweet type (right charts) for NEOS (upper
charts) and FPÖ (lower charts). __ 167
Figure 98. Task completion in the user study of Visualizer for eight participants. _______________________ 168
Figure 99. Task 1 user feedback for task load on a seven-point scale. ________________________________ 169
Figure 100. Task 2 user feedback for task load on a seven-point scale. _______________________________ 170
Figure 101. Dashboard example for the migration use case. _______________________________________ 171
Figure 102. Dashboard example for COVID-19 simulation data._____________________________________171
Figure 103. Scale Separation Map of Weather Data Coupled Multiscale model. ________________________173
Figure 104. Pre-processing workflow of Urban Air Pollution pilot. ___________________________________ 174
Figure 105. The workflow of Twitter Monitor, Cloudify blueprints and Social Network Simulator. __________176
Figure 106. Events submitted to Aviso from the ECMWF Dataflow.__________________________________179
Figure 107. AIRQ sensory data flow. __ 180
Figure 108. Location of the Bosch AIRQ sensors.___181
Figure 109. Traffic data flow.__182
Figure 110. Camera locations. ___ 183
Figure 111. Workflow of a query.___185

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 15 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms
Abbreviation /

acronym
Description

ACLED The Armed Conflict Location & Event Data Project
API Application Programming Interface
ARH ARH Informatikai Zartkoruen Mukodo Reszvenytarsasag
BUL Brunel University London
CAVE Cave Automatic Virtual Environment
CDS Climate Data Store
CE Communication Efficiency
CFD Computational Fluid Dynamics
CFL Courant–Friedrichs–Lewy
CKAN Comprehensive Knowledge Archive Network
CS Computational Scaling
CSV Comma-Separated Values
DDM Distributed Data Management
DMS Data Management System
Dx.y Deliverable number y belonging to WP x
EC European Commission
EMI Emission file used by Urban Air Pollution
GC Global Challenges
GE Global Efficiency
GIL Global Interpreter Lock (Python)
GPGPU General-purpose Computing on Graphics Processing Units
HDFS Hadoop Distributed File System
HLRS High Performance Computing Center Stuttgart
HPC High Performance Computing
HPCG High Performance Conjugate Gradient
HPDA High Performance Data Analytics
HPL High Performance LINPACK

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 16 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

HRES High Resolution Weather Forecast
ICCS Institute of Communications and Computer Systems
IPC The Integrated Food Security Phase Classification
KNOW Know-Center GmbH
LBE Load Balancing Efficiency
MPI Message Passing Interface
NUMA Non-uniform memory access
PCA Principal Components Analysis
PE Parallel Efficiency
POD Proper Orthogonal Decomposition
PSNC Poznan Supercomputing and Networking Center
SSO Single sign-on
SVD Singular Value Decomposition
SZE Széchenyi István Egyetem University
TCP Transmission Control Protocol
UAP Urban Air Pollution
UNHCR United Nations High Commissioner for Refugees
UUID Universally Unique Identifier
VM Virtual Machine
WP Work Package

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 17 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Executive Summary
This report summarizes the software development and optimisation activities in the work
package WP3. Besides the software implementations, also the final concepts are presented
and brought into context with the Benchmarking and Co-Design activity.
For the most part, this report focuses on the evaluation and improvement of the performance
of both simulation and data analysis applications as well as data management and
visualization solutions. This topic appears throughout most of the chapters, presenting this
issue from various perspectives. In general, the method of presentation of the analysis and
the obtained results from the point of view of the pilot applications was adopted. This
assumption was necessary due to the specificity of implementation solutions used within use
cases. Another assumption was to use the existing infrastructure for testing, both offered by
project partners and thanks to cooperation with the PRACE project. It should be noted,
however, that a distinction was made here within the so-called standard (regular)
infrastructure and novelty infrastructure. Only the first one is the subject of this report, while
the investigation on the second one is included in the D5.8 report.
The analysis starts with a co-design approach given along with chapter 2. It details a set of
metrics oriented on software-software and software-hardware adaptations. This examination
performed at smaller scale (one or several nodes) was done on the basis of meaningful
execution scenarios (input dimensions), and use a number of performance tools to conduct
the relevant performance audit. A broader approach to scalability analysis is presented in the
next chapter (chapter 3). This time, the Tier-0 infrastructure was included in the benchmark
set (thanks to the cooperation with PRACE). Thanks to optimization techniques implemented
throughout the project, it was possible to achieve scalability at a level exceeding 100,000
cores. It was the KPI level established in the Grant Agreement for at least one pilot application.
Here it was achieved for two applications from Urban Air Pollution and Social Network pilots.
A common approach to the assessment of scalability was related to the so-called ensemble
scenarios where the running of multiple instances of simulation applications at the same time
was analysed. This is of great importance when, at the modelling stage, the sensitivity and
validation of the implemented algorithms are assessed.
The entire chapter (5) of this work is devoted to the presentation of the optimization approach
and techniques in various cases. The analysis was conducted from different angles
(algorithmic, architectural and library) and provided meaningful indications to improve
simulations efficiency. The following two sections/chapters are dedicated to data analytics.
The first one concentrates on the presentation of algorithmic approach to implementation
methods facilitating data processing in pre- or post-simulation phase of the workflow. The

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 18 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

second one provides feedback on efficiency developed methods by conducting a bunch of
benchmarks.
In order to increase the efficiency of the data management system, it was proposed to
implement the extension for the CKAN system. It assumes the use of two protocols for data
transfer (GridFTP and SCP). The performance of this solution compared to the standard
approach offered by CKAN API has been confirmed in a series of tests.
The HiDALGO system is composed of many modules servicing various functionalities. Most
often they are deployed on different servers using different frameworks. It is connected with
the necessity to harmonize local accounts into a system based on Single Sign On. A description
of this solution is based on Keycloak, Vault, Cloudify and Croupier can be found in chapter 9.
The overall aim of visualization solutions is to provide necessary functionality to present data
from simulation and subsequent analysis in a way that facilitates their analysis by experts. A
number of achievements in the implementation of COVISE and Visualiser extensions are
presented. This information was supplemented by test data allowing to assess the overall
performance of implemented tools.
The last substantive chapter is about coupling technologies enabling seamless integration of
workflow modules. The content description embraces aspects mainly related on facilitating
of low-level pilot applications coupling and solutions delivering data from external sources
like weather, air quality, camera and telecommunication.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 19 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

1 Introduction
1.1 Purpose of the document
The overriding aim of this document is to provide information on the final achievements of
the WP3 package. This work is mainly reported from the perspective of evaluating the
performance of implemented applications on various computing infrastructures. Performance
presentation is approached from three different perspectives: co-design, scalability and
ensemble scenarios. Regardless of performance assessments, the work also focused on code
optimization aimed at making the best use of existing software and hardware solutions. In
addition to improvements in simulation applications, the report also presents solutions for
data analytics that facilitate the mining of data from the simulation process or being their
source. In order to ensure the highest possible efficiency of the data source for computational
processes, an extension for the CKAN system was proposed to increase data transfer. The
unification of access to various computing and service resources was ensured using the SSO
methodology based on solutions such as Vault, Keycloak, Cloudify and Croupier. In terms of
providing functional visualization tools, a number of extensions have been proposed that
meet the requirements reported by the pilots' owners. Additionally, the performance of these
tools was assessed in a series of benchmarks. Such a complex system as the HiDALGO
environment could not function without numerous technological solutions supporting the
connection of many modules with each other. These solutions have been developed to
support the internal communication process of pilots as well as to provide data from external
sources. The results of the test data presented in this document are supplemented by the raw
data published on the GitLab website.

1.2 Relation to other project work
This document is a continuation and summarization of the discussion on HPC, HPDA and
visualization applications and their capabilities in WP3. It focuses on development,
optimisation, benchmarking and coupling from a technical perspective. It mainly advances
the knowledge provided in all previous WP3 reports D3.1 [1], D3.2 [2], D3.3 [3], and D3.4 [4],
but it also links to some from other work package documents like:

 D4.4 Final implementation report of the pilot and future applications [5]
 D5.8 Final Benchmark Results for Innovative Architectures [6]
 D6.6 Final Report on Requirements, Components and Workflow Integration [7]

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 20 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

1.3 Structure of the document
The document is structured into 10 major chapters. Chapter 2 performs detailed analysis to
generate the knowledge and metrics for a software-software and software-hardware co-
design analysis. Each pilot is examined separately by a number of performance tools to
evaluate how best to match pilot applications to the runtime environment.
Chapter 3 focuses on benchmarking to verify the correctness and scalability of updated
versions of pilot applications and to extend the scalability analysis to other architectures,
made available to the HiDALGO project through the PRACE project.
Ensemble scenarios are tackled in chapter 4. This approach is required to assess testing
environment against limitations in running multiple instances of pilot applications in parallel.
Chapter 5 thoroughly analyses pilots’ applications and provides indications to improve their
efficiency. Applications are examined from different angles depending on the solutions used
during development. The proposed solutions are of a different algorithmic nature, using
architectural and software solutions.
Chapter 6 and chapter 7 are about data analytics; chapter 6 focuses on presenting their
implementation and chapter 7 on testing their performance.
Consecutive chapter 8 details using machine learning algorithms on dedicated hardware
accelerators. It is done by benchmarking of GPGPUs using neural models and data distribution
strategies for training optimization.
The enhancement of the HIDALGO data management system capabilities is elaborated in
chapter 9. It mostly concentrates on delivering new data transfer protocols to the existing
regular one offered by the CKAN API system. Applicable tests proving efficiency of proposed
solution are performed in various scenarios.
In the next chapter 10 aspects related with security are discussed. The HiDALGO is a
multimodule system which requires Keycloak IDM - users accounts system, to enable
possibility to log in to all services with support of SSO.
Most recent achievements in visualization are presented in chapter 11. They enlighten
advancements in the implementation of COVISE and Visualiser extensions, not forgetting
about benchmarking them allowing to assess the overall performance.
The last chapter (12) elaborates on the implementation of coupling technologies required to
integrate seamlessly modules of different purposes. These technologies are related to the
support of pilot applications and solutions delivering data from external sources like weather,
air quality, camera and telecommunication.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 21 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

2 Co-design
In this section, we perform a detailed performance analysis of the HiDALGO pilots on the
available HiDALGO systems. The end target of this analysis is to generate the knowledge and
metrics for a software-software and software-hardware co-design analysis. Towards this, we
examine each pilot separately, for one or more meaningful execution scenarios (input
dimensions), and use a number of performance tools to perform the relevant performance
audit.

Data repository folder:
https://gitlab.com/eu_hidalgo/benchmarking/-/tree/master/deliverable_3_5/co-design

2.1 Goal
We focus on 1) examining the scalability of the pilots, 2) breaking down the execution time to
identify the most consuming operations/functions, 3) examining the behaviour of
communication, and 4) calculating the POP Centre of Excellence [8] metrics for co-design, if
possible. We perform this analysis on all available HiDALGO systems, using the same tools,
unless otherwise noted in the text. In detail, we use:

 Python profilers for the breakdown of execution time, in the case of Python-based
applications. In particular, we use cProfile [9], a profiler module in Python, which
is a C extension and can provide the execution profile of a program.

 Application-specific timers for the breakdown of execution time, in the case of
OpenFOAM-based applications.

 mpiP [10] to examine the behaviour of communication. mpiP is a lightweight library
for the profiling of MPI applications, which collects statistical information about MPI
functions.

 Linux perf [11] to collect system-level performance counters, which are used for
the computation of the POP metrics. The Linux perf command is a tool that, among its
other capabilities, can collect measurements from the hardware performance
counters of a system, during the execution of an application.

We note that, both in the case of profilers and in the case of perf, we collect profiles and
measurements per MPI process, and aggregate results.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 22 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

2.1.1 Systems architecture and characterization
In this section, we use four of the available HPC systems within HiDALGO: the Hawk
supercomputer at HLRS, a part of the Vulcan cluster at HLRS (clx-25 nodes), the Eagle
supercomputer at PSNC, and the new, Altair supercomputer at PSNC. A brief specification of
the four systems is presented in Table 1.

Hawk Vulcan Eagle Altair
Host HLRS HLRS PSNC PSNC
Number of nodes 5632 96 589 1320

Node type 2 x AMD EPYC
7742 64-core
processor @ 2.25
GHz

2 x Intel(R)Xeon(R) Gold6248 20-coreprocessor @2.50GHz

2 x Intel(R) Xeon(R)
CPU E5-2697
v 3 1 4 - c o r e
processor @2.60
GHz

2 x Intel(R)Xeon(R)Platinum 826824-coreprocessor @2.90GHz
Cores per node 2 x 64 2 x 20 2 x 14 2 x 24
Memory per node 256GB 384GB 64GB 192GB

Interconnect HDR Infiniband HDR Infiniband FDR Infiniband EDR InfiniBand
Table 1. HiDALGO systems overview

To assist the reader towards a comparison of the applications performance on the different
systems, we also present the performance characterization of the nodes of the four different
systems, in terms of numbers of cores, peak performance and peak memory bandwidth, in
Table 2. We note that Eagle, which hosts the lower-end nodes in all assessed metrics, is the
oldest of the four systems. Altair and Vulcan have comparable peak performance, memory
bandwidth, and numbers of cores, hosting CPUs of similar generations. Hawk, on the other
hand, hosts the larger nodes in terms of cores, peak performance and memory bandwidth.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 23 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Hawk Vulcan Eagle Altair
Cores 128 40 28 48
Peak performance (GFLOPS/s) 4400 2048 1164 2918

Peak memory bandwidth (GB/s) 230 159 83 148
Table 2. HiDALGO systems node characterization

2.1.2 Co-design analysis and metrics
Our co-design analysis starts from the comparison of the execution time and speedup with
respect to a single node of a Pilot, on different numbers of nodes on all available systems. This
provides a high-level overview of the scalability of a Pilot and offers a quick answer to the
question of which system can offer faster execution for which application.
To further analyse the performance and identify potential room for co-designing the software
stack or optimizing a Pilot, we identify the functions or code blocks that dominate execution
time, using profiling tools.
As all HiDALGO Pilots embrace MPI as the parallel programming model, we perform
lightweight MPI profiling, to assess the impact of communication as a whole and specific
communication operations on execution time. This is an imperative step to co-design parallel
applications at larger scales.
Finally, for the Pilots and systems where required metrics can be easily collected, without
critical overheads to execution time and further limitations, we perform a performance audit
similar to the one proposed by the POP Center of Excellence [8]. The POP metrics for co-
design [12] attempt to capture parallel efficiency by products of scaling metrics and efficiency
metrics, ranging between 0 and 1.We outline briefly the standard POPmetrics in the following
paragraphs.
The overall quality of a parallel application is measured by its Global Efficiency (GE). The Global
Efficiency is a product of the Parallel Efficiency (PE) and the Computational Scaling (CS).
Parallel Efficiency measures the efficiency of the workload distribution among processes and
their communication. It is a product of Load Balancing Efficiency (LBE) and Communication
Efficiency (CE). The former is a ratio of the average to the maximum computation time and
indicates load imbalance, if present. The latter is the ratio of the maximum computation time
to the total runtime and indicates if the computation-to-communication balance of the
application is good enough. Computational scaling is a product of three metrics, Instruction

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 24 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

1 mpi4py.futures is currently not supported by ScoreP and subsequently Scalasca, as they are unable to traceMPI inter-communicator creation and related operations, causing profiling of Python applications parallelizedwith MPI, using futures for concurrency, to hang.

Scaling (IS), IPC Scaling (IPCS) and Frequency Scaling (FS). The three metrics serve as a
comparison to a reference case. In our analysis, we always use single-node execution as the
reference. Instruction scaling compares the number of useful instructions to the reference
case. Similarly, IPC scaling and Frequency Scaling compare the instructions per cycle and the
frequency against the reference case.
In our analysis, we use mpiP and perf to collect the necessary metrics to compute the POP
metrics. The same analysis can be performed automatically using Scalasca, however the
underlying tracing tool of Scalasca [13], Score-P [14], does not support some of the
features implemented in Python in the HiDALGO applications1.

2.2 Migration Pilot
2.2.1 Introduction, goals, and background
For the case of the Migration Pilot, we focus on Flee, the core simulation module of the pilot,
and in particular, we analyse the performance of the recent Flee 2.0 release [15]. This version
encompasses a number of optimizations compared to previous versions of Flee, with respect
to optimized memory usage/memory footprint, while the main parallelization scheme is what
we refer to as the “advanced” parallelization mode, or else, the agent-space-parallel version,
in which case both agents and location updates are distributed among processes, for better
scalability.
In this section, we perform a co-design analysis on micro-scale scenarios for Flee, on up to 8
nodes, on all HiDALGO systems. These scenarios are representative of the scalability of the
application, and can also reveal performance features of the application for macro-scale
scenarios, where, with strong scaling on hundreds of nodes, the equivalent per-node problem
size would be similar to a micro-scale scenario.
We examine two micro-scale simulation scenarios, where the initial number of agents in the
simulation is 2,000,000 (N=2M), with 10,000 new agents added per time step of the simulation
(d=10K), on two different synthetic input graphs for locations, a smaller graph of 100 vertices
(G=10-10-4) and a larger graph of 2500 vertices (G=50-50-4), with the same connectivity. We
perform simulations for 10 time steps (t=10). In Table 3 we describe the software environment
used for Flee on the HiDALGO systems, for purposes of reproducibility.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 25 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Software Hawk Vulcan Eagle Altair
Python 3.8.3 3.7.10 3.8.12 3.8.12
Pandas 1.0.5 1.2.5 1.1.5 1.1.5
Numpy 1.19.0 1.20.2 1.20.1 1.20.1
Mpi4py 3.0.3 3.0.3 3.0.3 3.0.3
MPI MPT 2.23 OpenMPI 4.0.5 OpenMPI 4.1.0 OpenMPI 4.1.0

Table 3. Software environment for Flee on the HiDALGO systems.
2.2.2 Experimental results
2.2.2.1 Execution time and speedup
We first examine the execution time of Flee on 1 up to 8 nodes, on each of the four available
HiDALGO systems, for the two execution scenarios. Figure 1 presents the execution time
comparison for the four systems. As expected, due to the size of the nodes of the different
systems, Eagle results in the higher execution times in both scenarios, and Hawk to the lowest
execution time, while Altair and Vulcan demonstrate comparable execution times, especially
as the number of nodes increases.

Figure 1. Comparing execution time of Flee on different systems on a synthetic 10-10-4 (left) and 50-50-4 graph(right) using 2M initial agents and 10K new agents per time step, for 10 time steps, for different numbers ofnodes.
Figure 2 shows the speedup with respect to a single node, for the same scenarios. We observe
that for the smaller 10-10-4 input graph, scalability is very close to linear for all systems as the
number of nodes increases, while for the larger 50-50-4 input graph, scalability is lower.
Additionally, while Hawk results in the lowest execution time in both scenarios, we observe
half the speedup for the larger input graph. This is also true for Vulcan, which we note that it
shares the same generation of interconnection network with Hawk.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 26 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 2. Comparing speedup w.r.t. 1 node of Flee on different systems on a synthetic 10-10-4 (left) and 50-50-4 graph (right) using 2M initial agents and 10K new agents per time step, for 10 time steps, for differentnumbers of nodes.

2.2.2.2 Communication/computation breakdown
To further examine the scalability behaviour of Flee, we profile the application with mpiP
and examine the communication behaviour of the application. Figure 3 shows the percentage
of execution time spent in MPI functions for the two scenarios, on the four different systems.
Overall, with the exception of Hawk, where only a small fraction of total time is spent on MPI
functions, for both scenarios, on the remaining three systems, communication time ranges
from 10% to 25% of the total execution time, with the single exception of Altair on 4 nodes
for the small graph scenario, and of Vulcan on 4 nodes for the large graph scenario, where we
observe a peak in communication time. We can therefore assume that the decreased
scalability of the application on the larger graph on three out of the four systems does not
owe to an increase in communication time, but to other factors.

Figure 3. Examining the percentage of execution time spent in MPI functions of Flee on different systems ona synthetic 10-10-4 (left) and 50-50-4 graph (right) using 2M initial agents and 10K new agents per time step,for 10 time steps, for different numbers of nodes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 27 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

We additionally break down MPI time in different MPI functions. The results are
demonstrated in Figure 4, for 8 nodes, where we observe that only two communication
functions appear in Flee, Allreduce and Allgatherv. In both scenarios, Allreduce
dominates communication time. This owes to the function being called more often within the
application, compared to the calls to the Allgatherv function. On Hawk and Altair, for the
scenario on the largest graph, where the calls to Allgatherv involve larger message sizes, the
percentage of time spent on both functions is more comparable, hence the Allreduce
operation is more optimized on those two systems, therefore they may be preferable for
large-scale runs of Flee.

Figure 4. Examining the percentage ofMPI time spent on the variousMPI functions of Flee on different systemson a synthetic 10-10-4 (left) and 50-50-4 graph (right) using 2M initial agents and 10K new agents per timestep, for 10 time steps, on 8 nodes.

2.2.2.3 Execution time breakdown
To understand performance bottlenecks that are not directly related to communication, we
profile Flee using the cProfile [16] module in Python, and present the results for the 10
more time-consuming functions, on 8 nodes, on all systems, for the two scenarios, in Figure
5. We observe that one of the most time consuming functions isnumpy.random.mtrand.RnadomState.choice, a function that is called multiple
times within the simulation and consumes about 20% of the total execution time in the small
graph scenario and 10-20% of the total execution time in the large graph scenario, depending
on the system. Additionally, some portion of the total execution time is spent onflee.wrapper and pflee.wrapper, which ensure the correctness of the simulation.
However, these overheads can be avoided in large-scale production runs, where the
instantiation of the simulation can be debugged in smaller scales, thus enhancing the
performance of Flee. A non-negligible fraction of time is spent on numpy.ufunc.reduce,
which performs a reduction on numpy matrices in the simulation. This corresponds to the
more computation-intensive parts of the Flee simulation.What is noteworthy is that on Hawk,

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 28 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

in the large graph scenario, a significant amount of time is spent on the flee.linkUp
function, which is a function calledmore oftenwhen the input graph is larger. This is a function
of low operational intensity, as it appends elements in lists. Therefore, as more functions
benefit from the node architecture of Hawk, the effect of this memory-bound function
becomes more evident on this system.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 29 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 5. Examining the percentage of total execution time spent on the various functions of Flee on differentsystems on a synthetic 10-10-4 (up) and 50-50-4 graph (down) using 2M initial agents and 10K new agents pertime step, for 10 time steps, on 8 nodes.

2.2.2.4 POP CoE Co-Design Metrics
To conclude our analysis, we compute the POP CoE co-design metrics for the two scenarios of
Flee on the four systems. Table 4 presents the POP metrics for Flee on 8 nodes of all systems,
using the smaller graph scenario.

System LB CE PE CS GE
Hawk 91.44% 78.95% 72.20% 100.00% 72.20%
Vulcan 86.88% 71.47% 62.09% 100.00% 62.09%
Eagle 82.77% 69.84% 57.81% 94.46% 54.60%
Altair 79.08% 65.51% 51.80% 91.66% 47.48%

Table 4. POP co-design metrics for Flee on different systems on a synthetic 10-10-4 graph using 2M initialagents and 10K new agents per time step, for 10 time steps, on 8 nodes. The five metrics are Load BalanceEfficiency (LB), Communication Efficiency (CE), Parallel Efficiency (PE), Computational Scaling (CS) and GlobalEfficiency (GE).

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 30 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

We observe that Flee demonstrates good load balancing on all systems, with slightly better
scores on Hawk. Load Balance (LB) Efficiency is better when the simulation is run on more
cores. Communication Efficiency (CE) ranges from ~65 - 80% on the different systems, to
verify that, to amortize the cost of the collective communication functions of Flee, one should
increase the useful computation per process. Parallel Efficiency (PE) ranges from 50 to 70%
and is dominated by the limited Communication Efficiency. We observe lower values for
Computation Scaling (CS), for Eagle and Altair. Note that Computation Scaling is computed
with the single-node execution as the reference case. In both cases, the inefficiency in
computation stems from an increase in the number of instructions, and not from interference,
as indicated by measurements collected with perf. What increases is the number of
instructions required to perform a simulation. Regarding overall efficiency, as indicated by
Global Efficiency (GE), Parallel Efficiency drives Global Efficiency down for Eagle and Altair,
however, Global Efficiency also indicates that Hawk and Vulcan, with their current software
stacks, are better matches for the Flee application.
2.2.3 Overall analysis
Our co-design analysis demonstrates that Flee performs better on newer-generation systems,
like Hawk and Altair. In terms of communication, Hawk appears to be a better match for Flee,
due to lower Allreduce times. There is room for optimization in the software stack for
Flee, mainly in the numpy library. Additional optimizations can be performed in memory-
bound functions of Flee, which will lead to better scalability on systems like Hawk. Overall, we
find that Flee is able to take advantage of high-performance nodes with multiple cores, as our
results have not indicated any performance loss from intra-node effects, like cache sharing or
limited memory bandwidth.

2.3 Urban Air Pollution Pilot
2.3.1 Introduction, goals and background
For the case of the Urban Air Pollution Pilot, we focus on the M32 (v2107), 2021 July version
of the CFD module of the UAP Pilot, and in particular on the optimized version of the steady
and transient simulation, using the simpleFoam and pimpleFoam function of OpenFOAM
[17] respectively.
In this section, we perform a co-design analysis on a single scenario for both the steady and
the transient simulation with OpenFOAM, on up to 8 nodes, on all HiDALGO systems. The
scenario is representative of the two critical most time-consuming part parts of the simulation

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 31 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

(other functions in the simulation correspond to pre- and post-processing of simulation
input/output) and of the scalability of the application, as the distribution of a medium-sized
mesh, on fewer nodes, demonstrates similar computational requirements with that of the
distribution of a larger mesh on larger node counts, and also allows us to collect performance
metrics in reasonable time. Due to the complexity of the OpenFOAM software, we do not use
the tools defined in the generic HiDALGO co-design approach, but rely on the reporting APIs
offered by the OpenFOAM software, which allow the user to add hooks to measure the
execution time of specific code blocks, to profile the time spent on different code blocks. We
use mpiP and perf to analyse communication and calculate the POP CoE metrics and also
report the time spent on critical communication functions.
We examine a scenario where the input is a generated 3D mesh of 3,400,00 points, with wind
profiles obtained from ECMWF weather data on the boundary and emission from traffic
simulation based on loop data, for 600 iterations for the steady simulation and a simulated
time of 900s for the transient simulation.
In Table 5, we describe the software environment used for simpleFoam and pimpleFoam
on the HiDALGO systems, for purposes of reproducibility.

Software Hawk Vulcan Eagle Altair
C compiler gcc 9.2.0 gcc 10.3.0 gcc 10.2 gcc 10.2
MPI HPE MPT 2.23 OpenMPI 4.1.1 OpenMPI 4.1.0 OpenMPI 4.1.0
scotch 6.0.9 6.0.9 6.0.9 6.0.9
OpenFOAM v.20 12 v 20 12 v 20.12 v 20.12

Table 5. Software environment for simpleFoam and pimpleFoam on the HiDALGO systems.
2.3.2 Experimental results
2.3.2.1 Execution time and speedup
We first examine the execution time of simpleFoam and pimpleFoam on 8 up to 32
nodes, on each of the four available HiDALGO systems. Figure 6 shows the execution time
comparison for the four systems. We observe the lowest execution times on Hawk, and the
highest execution time on Eagle, as expected, since this is the oldest among the four systems.
At the same time, however, we observe the scalability of both functions breaking on Hawk at
16 nodes. This is also true for simpleFoam on Altair, while pimpleFoam continues to scale
on 32 nodes on both Vulcan and Altair.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 32 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 6. Comparing execution times of simpleFoam (left) and pimpleFoam (right) on different systems on amesh of 3.4M points, for 600 timesteps in the steady simulation and 900s in the transient simulation, fordifferent numbers of nodes.
We next inspect the speedup of simpleFoam and pimpleFoam, with respect to a single
node, in Figure 7. We indeed observe a very low speedup on Hawk, medium and similar
speedups for Vulcan and Altair, and almost linear speedup for Eagle, which is, however,
attributed to the high execution time on a single node, of Eagle, which is almost double that
of the execution time of other systems.

Figure 7. Comparing speedup w.r.t. 1 node of simpleFoam (left) and pimpleFoam (right) on different systemson a mesh of 3.4M points, for 600 timesteps in the steady simulation and 900s in the transient simulation, fordifferent numbers of nodes.
2.3.2.2 Communication/computation breakdown
To examine the reasons behind the scalability breaks, we analyse the communication of the
application, using mpiP. We omit the analysis on Eagle, due to system storage unavailability,
which hindered the collection of profiling results. Figure 8 shows the percentage of execution
time spent in MPI functions for the two functions, on the three different systems, Hawk,
Vulcan, and Altair. Overall, for both functions in all cases, we observe an extremely high
percentage of execution time being spent on MPI, over 80% for the case of simpleFoam

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 33 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

and over 70% for the case of pimpleFoam.We also observe that MPI time increases as the
number of nodes increases, and especially for the case of Hawk, MPI time is very high for all
node counts.

Figure 8. Examining the percentage of execution time spent in MPI functions of simpleFoam (left) andpimpleFoam (right) on different systems on a mesh of 3.4M points, for 600 timesteps in the steady simulationand 900s in the transient simulation, for different numbers of nodes.
We further examine how MPI time breaks down in different MPI functions. The results for 32
nodes are demonstrated in Figure 9. For the case of simpleFoam (left), we observe that on
all systems, a significant percentage of time is spent on point-to-point communication, namelySend, Recv, and Waitall functions. Concerning collective functions, Alltoall takes up
a significant percentage of MPI time on Hawk, while on Vulcan and Altair, Allreduce
operations occupy more than 20% of communication time. For the case of pimpleFoam
(right), we observe that on all systems, almost 75% of communication time corresponds to
point-to-point operations Send, Recv, Probe, Isend, Irecv, Wait and Waitall.
Concerning collective operations, some percentage of time is spent on Alltoall and a
more significant percentage (about 20%) is spent on Allreduce operations on all three
systems.

Figure 9. Examining the percentage of MPI time spent on the various MPI functions of simpleFoam (left) andpimpleFoam (right) on different systems on a mesh of 3.4M points, for 600 timesteps in the steady simulationand 900s in the transient simulation, on 32 nodes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 34 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

2.3.2.3 Execution time breakdown
For a further comparison of function performance between systems, we collect the execution
time breakdown into blocks of code, annotated with the help of OpenFOAM APIs for
timing/profiling. Figure 10 presents this breakdown for the two functions on 32 nodes, across
all four systems. For the case of simpleFoam, we observe only slight differences in the
percentage of execution time, mainly for Initialization, and the solution of the pressure
equation. Initialization consumes a smaller percentage of the total execution time on Vulcan
and Eagle. Contrarily, solution of the pressure equation consumes a smaller percentage of
execution time on Hawk and Altair. For the case of pimpleFoam, similarly, Initialization is
the one that consumes a larger percentage of execution time on Hawk and Altair, while
solution of the pressure equation appears to consume a larger percentage of execution time
on Vulcan. Pinpointing the code blocks that are the main contributors to execution time can
help tune the respective parts of the software stack, if possible, to optimize their execution.

Figure 10. Examining the percentage of total execution time spent on various blocks of code of simpleFoam(left) and pimpleFoam (right) on different systems on a mesh of 3.4M points, for 600 timesteps in the steadysimulation and 900s in the transient simulation, on 32 nodes.
2.3.2.4 POP CoE Co-Design Metrics
To conclude our analysis, we compute the POP CoE co-design metrics for pimpleFoam on
Hawk, Vulcan and Altair, excluding Eagle, due to storage outages that hindered the collection
of profiling information. We focus on this function, as the unsteady simulation performed
through it is the most significant part of the Pilot. Table 6 presents the POP metrics forpimpleFoam on 32 nodes on the three systems.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 35 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

System LB CE PE CS GE
Hawk 30.51% 20.18% 6.16% 84.96% 5.23%
Vulcan 40.54% 37.44% 15.18% 169.93% 25.79%
Altair 40.19% 30.74% 12.36% 197.81% 24.44%

Table 6. POP co-design metrics for pimpleFoam on a mesh of 3.4M points, for 900s in the transient simulation,on 32 nodes. The five metrics are Load Balance Efficiency (LB), Communication Efficiency (CE), ParallelEfficiency (PE), Computational Scaling (CS) and Global Efficiency (GE).
We observe that on all three systems, the function demonstrates very poor Load Balancing
(LB) Efficiency and very poor Communication Efficiency (CE), with this being particularly true
for Hawk, where we have also observed the worst speedup on 32 nodes. In practice, this is
mainly due to the way the original mesh is decomposed, and much of the load imbalance of
the application comes from idle time due to communication imbalance, and communication
inefficiency, as also indicated by the very low number of the Communication Efficiency metric,
and as we have already observed the previous subsections. The two metrics result in a very
poor Parallel Efficiency (PE) for the function for the particular mesh, at this node count.
Contrarily, Computational Scaling (CS) is very high and exceeds 100%. This is due to Instruction
Scaling (IS): we have observed that the number of executed instructions decreases rapidly as
one adds more processes, indicating that the useful work per process is probably very low for
the particular mesh at this node count. However, this also indicates that the particular
function is able to handle more work per process, if one uses a larger problem size. The overall
Global Efficiency (GE) is very poor for Hawk, where we also observe the worst speedup. We
believe that the mesh we use is too small to be decomposed on the 32 nodes of Hawk, which
amounts roughly to 3-4 times more cores than the 32 nodes of the two other systems.

2.3.3 Overall analysis
Our limited co-design analysis for this application shows that, while it can benefit from the fat
nodes of Hawk, with the multitude of threads, communication overheads, along with other
possible factors, related to the mesh decomposition and communication imbalance, impede
its scalability on higher core counts, i.e. on high numbers of nodes, for the mesh size
examined. Mid-sized nodes, as are those on Vulcan and Altair, can also offer a good
performance both to the simpleFoam and to the pimpleFoam functions. Further analysis

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 36 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

is required, targeting the relation of the mesh decomposition on the performance of the
application.

2.4 Social Networks Pilot
2.4.1 Introduction, goals, and background
For the case of the Social Network Pilot, we focus on two applications, 1) eigenvalue calculator
(called “KPM”), which computes the approximate spectrum of eigenvalues of a graph, and 2)
SN-simulator, which simulates the spread of messages throughout a social networks graph.
For KPM, we analyse the performance of KPM v0.2 [18], and for SN-simulator, we analyse the
performance of SN-simulator v0.3 [19].
In this section, we perform a co-design analysis on representative inputs for the two
applications, on up to 8 nodes of three of the four HiDALGO systems, i.e. Hawk, Vulcan, and
Altair. We omit the analysis on Eagle, since the performance measurements have taken place
at a time of transition from Eagle to Altair, where Eagle-only node allocations on the system
were not available.
For KPM, we examine a scenario where the input graph is a subgraph of the friendship-
relationship graph of the pokec social network from the SNAP collection [20], of 50,000
nodes from the initial 1,000,000 nodes of the pokec graph. The number of samples equals
to 512 (s=512), the number of intervals equals to 96 (i=96) and the degree equals to 62 (d=62).
For SN-simulator, we examine a scenario where the input data is the Neos dataset, of medium
size, consisting of users tweeting about the NEOS political party during the Austrian political
elections in 2019. The number of sources equals to 400 (so=400), the number of samples
equals to 1000 (sa=1000) and the random seed for the simulation equals to 42 (se=42). In
Table 7, we describe the software environment used for the two applications on the HiDALGO
systems, for purposes of reproducibility.

Software Hawk Vulcan Altair
Python 3.8.3 3.7.10 3.8.12
Pandas 1.0.5 1.2.5 1.1.5
Numpy 1.19.0 1.20.2 1.20.1
SciPy 1.5.0 1.6.2 1.7.1
Numba 0.54.0 0.53.1 0.54.1

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 37 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Mpi4py 3.0.3 3.0.3 3.0.3
MPI MPT 2.23 OpenMPI 4.0.5 OpenMPI 4.1.0

Table 7. Software environment for KPM and SN-simulator on the HiDALGO systems.
2.4.2 Experimental results
2.4.2.1 Execution time and speedup
We first examine the execution time of KPM and SN-simulator on 1 up to 8 nodes, on each of
the three selected HiDALGO systems. Figure 11 and Figure 12 present the execution time
comparison for the two applications on the three systems. We observe that, for both
applications, the lowest execution time is observed on Altair. However, for KPM, on 8 nodes,
all systems appear to demonstrate comparable execution times, while for SN-simulator, Altair
and Vulcan show a similar scaling behaviour, while Hawk remains slower.

Figure 11. Comparing execution time of KPM on different systems on the pokec-5000 graph using 96intervals, 512 samples and a degree of 62, for different numbers of nodes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 38 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 12. Comparing execution time of SN-simulator on different systems on the NEOS dataset using 400sources, 1000 samples and 42 as the seed, for different numbers of nodes.

Figure 13 and Figure 14 show the speedup with respect to a single node, for the two
applications. We observe that, for KPM, both Vulcan and Hawk, demonstrate a super-linear
speedup, compared to Altair where speedup is very close to linear. Contrary, for SN-simulator,
the observed speedup is much lower on both systems, with a very low speedup being
observed on Hawk, where adding more than 2 nodes does not have any effect on the
execution time of the simulation. Therefore, we make the following three key observations:
1) the two applications have very different scalability behaviour, 2) the phenomenon of super-
linear speedup for KPM needs to be observed and interpreted with caution, and 3) SN-
simulator is less scalable, appearing to be incapable of taking advantage of the multiple
available cores of Hawk.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 39 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 13. Comparing speedup w.r.t. 1 node of KPM on different systems on the pokec-5000 graph using 96intervals, 512 samples and a degree of 62, for different numbers of nodes.

Figure 14. Comparing speedup w.r.t. 1 node of SN-simulator on different systems on the NEOS dataset using400 sources, 1000 samples and 42 as the seed, for different numbers of nodes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 40 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

2.4.2.2 Communication/computation breakdown
To examine the scalability of the two applications of the Social Network Pilot, we profile both
applications with mpiP and examine their communication behaviour. Figure 15 and Figure
16 show the percentage of execution time spent in MPI functions for the two applications, on
the three different systems. As with their scalability, we observe very different percentages
of MPI time for the two applications. For KPM, in Figure 15, we observe a high MPI time for a
single node, both for Hawk and Vulcan, which decreases as the number of nodes increases,
while we observe near-zeroMPI times on Altair. The decreasingMPI time on Hawk and Vulcan
are a potential source of the super-linear speedup we observe. Contrarily, we observe very
low percentages of MPI time for the SN-simulator in Figure 16. This percentage only increases
with the number of nodes on Vulcan, but only to a small percentage of up to 10%, hence not
inhibiting the scalability of the application on this system.

Figure 15. Examining the percentage of execution time spent in MPI functions of KPM on different systemson the pokec-5000 graph using 96 intervals, 512 samples and a degree of 62, for different numbers of nodes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 41 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 16. Examining the percentage of execution time spent in MPI functions of SN-simulator on differentsystems on the NEOS dataset using 400 sources, 1000 samples and 42 as the seed, for different numbers ofnodes.

We additionally break downMPI time in different MPI functions, demonstrating the results in
Figure 17 and Figure 18, for 8 nodes. For the case of the KPM application in Figure 17, we
observe that, on Hawk, and Vulcan, almost all MPI time is spent on the functionMPI_Comm_dup, which is not called anywhere within the application, and therefore is call
internally by the mpi4py library. Contrarily, on Altair, the percentage of this particular
function is insignificant, although an accountable percentage of time is also spent on theMPI_Comm_group andMPI_Comm_split functions, also called internally by the mpi4py
library. All these functions are used to internally optimize collective operations on multi-core
systems; therefore, we suspect that, what is identified by the profiler as a call to theMPI_Comm_dup function is the outcome of a lazy evaluation in Python of the equivalent
broadcast and one-sided operations performed by the application, on Hawk and Vulcan. We
can, however, safely assume that the communication of this application is more optimized
with the current software stack on Altair, leading to a lower execution time, and the respective
parts of the software stack need to be tuned both on Hawk and Vulcan, to see the exact

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 42 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

behaviour of the communication of the application on the two systems, and the room for
performance gains.
Looking at the case of the SN-simulator, in Figure 18, we note that, althoughMPI time appears
to be insignificant compared to total execution time, most of it is spend on Barrier andBcast functions inMPI, with theBcast function consumingmost of theMPI time on Vulcan,
which is, most probably, the reason for the increase in MPI time on this system.

Figure 17. Examining the percentage of MPI time spent on the various MPI functions of KPM on differentsystems on the pokec-5000 graph using 96 intervals, 512 samples and a degree of 62, for 8 nodes.

Figure 18. Examining the percentage of MPI time spent on the various MPI functions of SN-simulator ondifferent systems on the NEOS dataset using 400 sources, 1000 samples and 42 as the seed, for 8 nodes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 43 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

We note, however, that, for the case of SN-simulator, communication does not contribute
significantly on MPI time, and does not explain the reduced performance and scalability of
this application on Hawk.
2.4.2.3 Execution time breakdown
To further study performance bottlenecks, we profile the two applications using the cProfile
module in Python, and present the results for themost time-consuming functions, on 8 nodes,
on all three systems, in Figure 19 and Figure 20. In Figure 19, for the KPM application, we
observe that two of the most consuming functions are data._mul_scalar andscipy.sparse._sparsetools.csr_matvec, which correspond to the most
compute-intensive portions of the application on all systems, and refer to scalar matrix
multiplication and sparse matrix-vector multiplication in SciPy. We can also observe that the
communication time we detected on Hawk and Vulcan corresponds to a Reduce operation
in MPI, which appears not to consume any significant amount of time on Altair, making this
machine more performant for this application. We finally observe that a larger percentage of
the execution time is consumed on the numpy.ndarray.copy function on Hawk, which
is possibly a more memory-bound function.
For SN-simulator, in Figure 20, we observe very different percentages spent on different
functions on the three systems. A significant amount of time on all three systems is spent on
the sleep function, with almost 40% of the execution time of Hawk resulting in idle cores.
This consumption is an indicator of load imbalance, which is also the most plausible cause for
the reduced performance of the application on Hawk. Additionally, we observe a notable
percentage of execution time spend on a Bcast function on Hawk and Vulcan, however,
given that the percentage of MPI time is higher on Vulcan, we safely assume that this function
is actually faster on Hawk for the same number of nodes. We finally observe a significant
amount of time spent on the propagation.edge_sample_Numba function on Hawk
and Altair, and an almost equivalent amount of time spent on thenumpy.random.mtrand.RandomState.choice function on Altair. The latter is
actually called from the edge_sample_Numba function, and included in its time, yet on
Altair, this appears in our profiles as the most time-consuming part.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 44 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 19. Examining the percentage of total execution time spent on the various functions of KPMon differentsystems on the pokec-5000 graph using 96 intervals, 512 samples and a degree of 62, for 8 nodes.

Figure 20. Examining the percentage of total execution time spent on the various functions of SN-simulatoron different systems on the NEOS dataset using 400 sources, 1000 samples and 42 as the seed, for 8 nodes.

2.4.2.4 POP CoE Co-Design Metrics
To conclude our analysis, we compute the POP CoE co-design metrics for the application on
the three systems. Table 8 presents the POP metrics for KPM on 8 nodes of all three systems,
and Table 9 presents the same metrics for SN-Simulator on 8 nodes of all three systems.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 45 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

System LB CE PE CS GE
Hawk 71.99% 99.93% 71.95% 91.44% 65.79%
Vulcan 60.44% 99.29% 60.01% 88.42% 53.06%
Altair 94.25% 99.98% 94.24% 99.68% 93.93%

Table 8. POP co-design metrics for KPM on different systems on the pokec-5000 graph using 96 intervals, 512samples and a degree of 62, for 8 nodes. The five metrics are Load Balance Efficiency (LB), CommunicationEfficiency (CE), Parallel Efficiency (PE), Computational Scaling (CS) and Global Efficiency (GE).
We observe that KPM demonstrates fair Load Balance (LB) Efficiency on all systems, but with
a significant improvement on Altair. The root cause for this is a combination of the amount of
work to be distributed per processor, the time to complete this useful work per processor,
and the different number of processes on each system. Communication Efficiency (CE) is high
on all three systems on 8 nodes, since some of the communication is overlapped with the
computation of the process with themaximum computation time, hencemitigating the higher
MPI times in the case of Hawk and Vulcan. Parallel Efficiency (PE) is mostly determined by
Load Balance Efficiency, with Altair giving the higher score. In terms of Computational Scaling
(CS), computed with the case of the single node as the reference point, Vulcan is the system
with the lower score, which owes to an increase in the number of instructions, and additionally
a drop in the IPC, compared to the single-node case. We note however, that Computational
Scaling is high on all three systems, since the main functions for computation in this
application refer to widely-used and optimized operations on HPC systems, like scalar
multiplication and SpMV. Overall, the Global Efficiency (GE) of the application is very high on
Altair, but much lower on Hawk and Vulcan, as also indicated by the equivalent speedups and
previous analysis.

System LB CE PE CS GE
Hawk 61.45% 98.38% 60.45% 30.02% 18.15%
Vulcan 71.15% 89.65% 63.79% 71.85% 45.83%
Altair 83.37% 99.09% 82.61% 66.97% 55.32%

Table 9. POP co-design metrics for SN-simulator on different systems on the NEOS dataset using 400 sources,1000 samples and 42 as the seed, for 8 nodes. The fivemetrics are Load Balance Efficiency (LB), CommunicationEfficiency (CE), Parallel Efficiency (PE), Computational Scaling (CS) and Global Efficiency (GE).

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 46 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

In Table 9, we observe that SN-simulator suffers both from average Load Balancing Efficiency
and poor Computational Scaling, which result to an average Parallel Efficiency and a very low
Global Efficiency. Vulcan and Altair score better than Hawk in all metrics, resulting to better
Global Efficiency. On Hawk, however, as also indicated by our previous analysis of the
application profile, very little computational work is performed per process, and our analysis
with perf additionally indicates an excessive number of instructions being executed
compared to the single-node case. We can therefore conclude that the SN-simulator, in its
current state, is not able to take advantage of the ample parallelism offered on the 8 nodes
of Hawk.
2.4.3 Overall analysis
Our co-design analysis demonstrates that the KPM application is computationally efficient
but requires fine tuning of its communication software stack to take advantage of the
underlying system. With our current setup, the best system for this application is Altair,
however we expect performance degradation due to communication to disappear with the
co-design of the application’s communication over the relevant software stack on Hawk and
Vulcan. For the case of the SN-simulator, we find that this application is heavily unbalanced,
however it can be efficiently scaled up to a few hundreds of cores on modern systems like
Vulcan and Altair, with the given input. A careful load balancing scheme can release a better
scaling potential for the application on systems like Hawk, given that the problem size is
increased appropriately to produce meaningful computation for each process/core.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 47 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

3 HPC benchmarking
At this stage of the HiDALGO project, we have focused on benchmarking HiDALGO Pilot
applications for two purposes: 1. Verify the correctness and scalability of new versions of
applications of the Pilots on the HiDALGO systems, 2. 2. Extend the scalability analysis on
other additional HPC system architectures, and in particular, the Mare Nostrum 4
supercomputer at BSC, the Piz Daint supercomputer at CSCS, and the SUPERMUC-NG
supercomputer at LRZ, made available to the HiDALGO project through the PRACE project
[21]. All benchmarking results are stored in their raw format in the HiDALGO benchmarking
repository. HPC benchmarking follows the HiDALGO methodology for benchmarking, as
outlined in HiDALGO Deliverable 3.1, unless otherwise stated.

Data repository folder:
https://gitlab.com/eu_hidalgo/benchmarking/-/tree/master/deliverable_3_5/scalability

3.1 Migration Pilot
3.1.1 Introduction and Goal
The core component of the Migration Pilot, parallel Flee, has undergone minor changes in its
code base in the latest months of the projects, leading to a code release. In this section, we
focus on the recent Flee 2.0 release [15]. As Flee has been thoroughly evaluated with respect
to its performance and scalability in previous HiDALGO deliverables, in this deliverable, we
consider a single macro-scale scenario, of unprecedented scale, stressing the simulation
component to a very large synthetic graph, with a high number of agents, and high numbers
of cores. Our experiments are performed on all available large-scale HiDALGO systems, i.e.
Hawk and Vulcan at HLRS and Altair and Eagle at PSNC, but also on the Mare Nostrum 4 [22]
supercomputer at Barcelona Supercomputing Center (BSC), where access was acquired
through the PRACE project.
In this scenario, the initial number of agents in the simulation is 100,000,000 (N=100M), with
no new agents added at any time step. The synthetic graph consists of 10,000
vertices/locations with a connectivity degree equal to 8 (G=100-100-8). We perform
simulations for ten time steps (t=10), the equivalent of 10 simulated days.
In Table 10 we describe the software environment used for Flee on the five systems, for
purposes of reproducibility.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 48 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Software Hawk Vulcan Eagle Altair Mare Nostrum 4
Python 3.8.3 3.7.10 3.8.12 3.8.12 3.8.2
Pandas 1.0.5 1.2.5 1.1.5 1.1.5 1.0.5
Numpy 1.19.0 1.20.2 1.20.1 1.20.1 1.19
Mpi4py 3.0.3 3.0.3 3.0.3 3.0.3 3.0.3
MPI MPT 2.23 OpenMPI

4.0.5
OpenMPI
4.1.0

OpenMPI
4.1.0

Intel(R) MPI
Library for Linux*
OS, Version 2017
Update 3 Build
20170405

Table 10. Software environment for Flee on the HiDALGO and PRACE systems.
3.1.2 Experimental results
The experimental results are demonstrated in Figure 21, for the four HiDALGO systems, and
Mare Nostrum. First, we observe that execution time is significantly lower on Altair and
Vulcan, compared to the remaining three systems, however, we note that the nodes of Altair
are similar to the nodes of Mare Nostrum, thus the observed difference can safely be
attributed to the software stack. We additionally note that Eagle, although hosting older-
generation nodes than the other systems, demonstrates high scalability, up to 64 nodes.
Another observation is that the scalability of Flee begins to diminish on more than 64 nodes
on Hawk and Vulcan, which share the same interconnection network technology. We
therefore believe that, in this case, the application is limited by communication over the
particular network.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 49 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 21. Comparing execution time of Flee on different systems on a synthetic 100-100-8 graph using 100Minitial agents, for 10 time steps, for different numbers of nodes. Both axes are in logarithmic scale.

3.1.3 Overall analysis
Overall, we conclude that Flee is scalable on all different systems, without any porting effort,
on thousands of cores, even using non-trivial problem sizes, on up to 256 nodes, which
translates to 6144 cores on Altair, and 16384 cores on Hawk, with a speedup with respect to
a single node of 33x and 13x respectively.

3.2 Urban Air Pollution Pilot
3.2.1 Introduction and Goal
The current benchmarks of the Urban Air Pollution pilot focus on the M32, 2021 July version
of the CFDmodule of the UAP pilot. Current focus is solely on the OpenFOAM implementation.
Actual developments include further optimizations of the transient simulation,

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 50 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

pimpleFoam, including new features likemulticomponent pollutants and canopymodelling.
Performance optimization is discussed in detail in chapter 5.2.2.1. The benchmarked meshes
were not changed so performance improvement is easier to demonstrate.
Benchmarks are issued on systems of various architectures, compilers and MPI libraries.
Versions of the necessary software are summarized in the following Table 11:

Software Hawk Altair Piz Daint
compiler GCC 9.2 GCC 10.2 CRAY CLANG 11
MPI HPE MPT 2.23 OpenMPI 4.1.0 CRAY-MPICH 7.7.16
scotch 6.0.9 6.0.9 6.0.9
OpenFOAM v20 12 v20 12 v20 06

Software Joliot-Curie Vulcan Eagle Milancompiler ICC 19.1.0.166 GCC 10.3 GCC 10.2 GCC 9.3.0MPI OpenMPI 4.0.5 OpenMPI 4.1.1 OpenMPI 4.1.0 OpenMPI 4.0.2scotch 6.0.9 6.0.9 6.0.9 6.0.9OpenFOAM v20 06 v20 12 v20 12 v20 12
Table 11. Software specification for UAP pilot benchmarks.

For details on the instantiation of the simulation, we refer the reader to D3.3. The execution
scenarios use generated 3D meshes (octree) of different sizes with wind profiles obtained
from ECMWF weather data on the boundary and emission from traffic simulation based on
loop data. Various mesh sizes are run for various iterations and different time spans are
simulated to fit into time limit for the 1-core simulation. The number of iterations insimpleFoam and the simulated time in pimpleFoam are reported in the Table 12 below.

Tag Mesh size Iterations Simulated time
728k 728 000 600 3600 s
3.4M 3 400 000 600 900 s
14M 14 000 000 400 100 s
Table 12. The number of iterations in simpleFoam and the simulated time in pimpleFoam.

All reported times are scaled to a steady simulation of 600 iterations and a simulated time of
one hour, the smallest time frame considered in productive runs. For most systems,
benchmarks have been repeated only once, due to high load and queue times. We rely on
internal OpenFOAM functions to report execution time: the timestamp reported after

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 51 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

completion of the first iteration is subtracted from the timestamp reported at completing all
calculations, so the initialization part is not considered for scalability.

3.2.2 Results
Results are presented per mesh size separately. Runtime is shown for both steady simulation
(simpleFoam) and transient simulation (pimpleFoam). Also, per node speedup and parallel
efficiency is shown, although only for the transient simulation, as it takes significantly longer.
All seven architectures are presented on one plot, visually grouping AMD based systems with
a reddish, and INTEL based systems with blueish colours. Table 13 below summarizes all
architectures w.r.t. CPU type, legend, and maximum number of nodes and cores used.

Legend Architecture coresper node # max nodes # max cores
CPU(s) 728k 3.4M 14M 728k 3.4M 14M
HAWKAMD EPYC 7742 2 x 64 8 64 782* 1 024 8 192 100 096*
JCRAMD EPYC 7H12 2 x 64 4 32 64 512 4 096 8 192
MILANAMD EPYC 7763 2 x 64 8 64 64 1 024 8 192 8 192
ALTAIRINTEL Xeon Platinum 8268 2 x 24 32 32 32 1 536 1 536 1 536
VULCANINTEL Xeon Gold 6248 2 x 20 64 64 64 2 560 2 560 2 560
EAGLEINTEL E5-2697v3 2 x 14 16 32 32 448 896 896
PIZ DAINTINTEL E5-2690v3 1 x 12 32 64 128 384 768 1 536
Table 13. The number of iterations in simpleFoam and the simulated time in pimpleFoam.

Only the steady state simulation is run for 782 cores on HAWK, as runtime already increases
at 512 nodes for the transient and 128 nodes for the steady state simulation.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 52 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

3.2.2.1 Small mesh size (728k cells) analysis

Figure 22. Execution time vs. number of nodes for steady (left) and transient (right) simulation of theOpenFOAM Air Quality Dispersion Model for small mesh size on different architectures. Both axes uselogarithmic scale.

Figure 23. Per node Speedup (left) and Parallel efficiency (right) vs. number of nodes for transient simulationof the OpenFOAM Air Quality Dispersion Model for small mesh size on different architectures. Both axes uselogarithmic scale.
Figure 22 and Figure 23 compare different architectures on the investigated metrics with the
small mesh size. AMD type architectures do have better single node performance regarding
runtime but moving to more nodes is more beneficial on INTEL type architectures. For both
types, newer architectures perform better. For steady simulation, HAWK performs best with
31 seconds on 1 node and ALTAIR with 34 seconds on 4 nodes. For transient, MILAN performs
best at 46 seconds with 4 nodes and VULCAN with 49 seconds on 64 nodes. Older INTEL type
architectures profit significantly more frommulti node simulations with efficiencies exceeding
100%.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 53 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

3.2.2.2 Middle mesh size (3.4M cells) analysis

Figure 24. Execution time vs. number of nodes for steady (left) and transient (right) simulation of theOpenFOAM Air Quality Dispersion Model for middle mesh size on different architectures. Both axes uselogarithmic scale.

Figure 25. Per node Speedup (left) and Parallel efficiency (right) vs. number of nodes for transient simulationof the OpenFOAM Air Quality Dispersion Model for middle mesh size on different architectures. Both axesuse logarithmic scale.
Figure 24 and Figure 25 compare different architectures on the investigated metrics with the
middle mesh size. AMD architectures still have better single node performance regarding
runtime but, again, moving to more nodes is more beneficial on INTEL architectures up. For
both types, newer architectures perform better. For steady simulations, MILAN performs best
with 39 seconds on 16 nodes and VULCAN with 62 seconds on 64 nodes. For transient, MILAN
performs best at 196 seconds with 16 nodes and ALTAIR with 264 seconds on 32 nodes. All
INTEL type architectures profit significantly more from multi node simulations with
efficiencies exceeding 100% in many cases. AMD type architectures, however, do show super-
linear scaling behaviour only up to 4 nodes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 54 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

3.2.2.3 Large mesh size (14M cells) analysis

Figure 26. Execution time vs. number of nodes for steady (left) and transient (right) simulation of theOpenFOAM Air Quality Dispersion Model for large mesh size on different architectures. Both axes uselogarithmic scale.

Figure 27. Per node Speedup (left) and Parallel efficiency (right) vs. number of nodes for transient simulationof the OpenFOAM Air Quality Dispersion Model for large mesh size on different architectures. Both axes uselogarithmic scale.

Figure 26 and Figure 27 compare different architectures on the investigated metrics with the
large mesh size. AMD type architectures now exhibit only a relatively smaller single node
performance advantage, and this is increased at 8 nodes. At 64 nodes, modern INTEL and
AMD architectures show similar performance. Fastest calculations for steady simulation are
done on HAWK at 92 seconds on 128 nodes and VULCAN at 120 seconds on 64 nodes. Best
performance for transient simulations are shown on HAWK with 16:12 [mm:ss] with 256
nodes, while VULCAN performs the simulation in 33:00 [mm:ss] although using only 64 nodes.
INTEL architectures show stable scaling behaviour. Speedup is almost linear, with slight
superlinearity above 8 nodes, which is strongest now on the newest architecture, ALTAIR. On

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 55 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

the other hand, AMD machines show strong super-linear behaviour for a node count up to 8,
and strong sublinear behaviour afterwards. Running with 782 nodes on HAWK hits the
100 000 core mark with a reasonable runtime, which suggests, that the code is a good
candidate to run on this number of nodes and may even be scalable with a larger cell count
mesh.

3.2.3 Analysis
To analyse performance, we can group architectures to AMD and INTEL types. Intel
architectures generally do present a lower per node performance, albeit also with lower
number of cores per node. They show amore stable parallel efficiency. Super-linear behaviour
can be observed for all mesh sizes. AMD architectures exhibit lower per node runtimes with
higher per node core count. Super-linear behaviour is only observed with the large mesh size,
however, here it is stronger.
We can observe, that save a few exceptions, there is no minimum in runtime with Intel
architectures, so adding extra nodes may yield extra performance. All AMD types have a
minimum performance at around 4 nodes for the small and at 16 nodes for the middle mesh
size. For large mesh size, maximum performance was achieved with 256 nodes on HAWK.
Looking at per node speedup, all AMD architectures had less than 2 for the small mesh size,
top value was achieved by PIZ DAINT at 17 with 16 nodes. For middle mesh size, top AMDwas
MILAN with 8.5 at 16 nodes, and top Intel again PIZ DAINT with 47 at 64 nodes. Top per node
speedup for high mesh size is 142 on PIZ DAINT with 128 nodes and 105 for HAWK for 256
nodes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 56 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 28. Per core cell count on various architectures and mesh sizes.

To assess performance on larger cell count meshes, it is informative to calculate the number
of cells per core for the maximum performance core count. Figure 28 presents cell per core
counts on all investigated architectures and mesh sizes. All AMD platforms have sub 2000 cell
count per core, that is mostly homogeneous on all mesh sizes. Newer Intel platforms also
have this value for small and middle mesh. Large mesh size and older architectures did not
reach this number, also do have potential to benefit from more nodes. So, the 2000 is a
realistic cell per core limit to estimate core count need for maximum performance.

3.3 Social Networks Pilot
3.3.1 Introduction and Goal
Throughout this Section we focus on the analysis and benchmarking efforts targeted on the
two major components of the social network pilot. First, we look at the performance of the
simulation framework itself (called “SN-Simulator”), followed by a discussion of the
performance of our eigenvalue calculator (called “KPM”).
Since the last set of benchmarks (presented in Deliverable 3.4) we made numerous
improvements to both aforementioned applications. Amore detailed explanation and analysis
of each of these changes can be found in Section 5.3. One of the goals of this section is to

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 57 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

assess the impact these improvements have made on our applications. On the other hand,
we also prepared additional benchmarking scenarios and, for the first time, report
benchmarks that were performed on the Altair.
In total, we performed three experiments on the Hawk, Altair and SuperMUC-NG
supercomputers for this section. SuperMUC_NG is a petascale HPC system operated by the
Leibniz Supercomputing Centre in Munich, Germany. It consists of more than 300,000
compute cores that are equipped with Intel Xeon Skylake Platinum 8174 processors [23]. The
first two experiments are benchmarks of the SN-Simulator while in the last experiment we
considered the KPM application. It is worth to mention that we performed an additional small
benchmark of the SN-Simulator in Section 4.3 in form of an ensemble run, where we utilized
up to 100K cores on SuperMUC-NG.
3.3.1.1 Description and Input Data
In order to allow the reader to become familiar with our benchmarked applications we quickly
summarize the most important aspects as well as input parameters.
SN-Simulator. At the heart of our pilot lies the message simulator itself. Given some network
(for example follower-followee relationships on twitter) and some additional parameters it
simulates the spread/flow of messages throughout this network.
Throughout the following tests, we will use the following data-sets as input. Each of them
consists of a follower-followee network of users that tweeted about a certain topic. They also
include some additional metrics that describe flow/spread of messages that are related to
that topic. One such metric is for example the average number of retweets.

 neos: A smaller data set, which consists of roughly 4,500 tweets about the Austrian
neos political party. It was acquired during the 2019 Austrian elections.

 fpoe: A larger data set, which was acquired at the same time as the neos data set. In
this case, the data set consist of approximately 19,000 tweets about the FPÖ political
party

 covid19: A large data set, which consists of roughly 375,000 tweets about the covid19
social distancing regulations. It was acquired at the beginning of 2020.

Other notable input parameters include samples and sources which directly control the
number of tweets/messages that are simulated. The overall work the simulation needs to
perform is roughly correlated to samples*sources.
KPM.When supplying our simulator with a synthetically generated input graph, we first need
to establish whether this graph exhibits the properties of real network social networks. One
such property is the so-called eigenvalue spectrum. Computing this spectrum for a given

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 58 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

graph is computationally demanding. Our KPM application computes an approximation of
this spectrum in form of a histogram of eigenvalues. The accuracy of the computed histogram
can be controlled via three parameters intervals, samples and degree. For our benchmark
purposes we considered the friendship-relationship graph of the pokec social network
(provided by SNAP [24]). It contains approximately 1 million users.
3.3.1.2 Software Environment
For all of the newly performed benchmarks, we used the following software environments
(Table 14).

Software / Package Hawk and SuperMUC Altair
Python 3.9.6 3.8.12
Numba 0.53.1 0.53.1
Numpy 1.21.1 1.21.2
Scipy 1.6.3 1.7.1
Pandas 1.3.0 1.3.4
Mpi4py 3.1.1 3.1.1
MPI Library MPICH 3.4.2 OpenMPI 4.1.0
SN-Simulator Version 0.3 0.3
KPM Version 0.2 0.2

Table 14. Software stack for Social Networks benchmarks.
Note, in some experiments we use previously obtained results for comparison. This concerns
results for v0.2 for the SN-Simulator and v0.1 for the KPM application. The exact software
environment for these results was stated in Deliverable 3.4. The code of the SN-Simulator as
well as the KPM application can be found on [19] and [18], respectively.
3.3.2 Experiment 1 (SN-Simulator)
For our first experiment, we start with a comparison between the new version 0.3 of our SN-
Simulator and the previously benchmarked version 0.2 (see Deliverable 3.4 for these
benchmarks).We consider the same parameters and data sets as in the benchmarks of version
0.2. Additionally, we perform our simulations on the same supercomputing systems. That is,
we considered the neos and fpoe datasets, set sources to 40, samples to 1000, and

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 59 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

performed the benchmarks on Hawk as well as SuperMUC-NG. Due to the lack of
benchmarking results of version 0.2 on Altair, we postpone tests on this system until
Experiment 2 in Section 3.3.3.
3.3.2.1 Results

nodes (log)
1 2 4 8 16 32

exe
cuti

ont
ime

[s]

0
500
1000
1500

NEOS

Hawk v0.3 Hawk v0.2SuperMUC v0.3 SuperMUC v0.2
nodes (log)

1 2 4 8 16 32

exe
cuti

ont
ime

[s]

0
500
1000
1500

FPÖ

Hawk v0.3 Hawk v0.2SuperMUC v0.3 SuperMUC v0.2
Figure 29. Comparison of the running times of our new (v0.3) and old (v0.2) SN-Simulator on Hawk andSuperMUC-NG. On the left, we considered the neos data set. On the right, the fpoe data set.

3.3.2.2 Analysis
As we can see, the running time required by v0.3 of our simulation decreased significantly for
both data sets on both systems. For the smaller neos data set, we can observe a speed-up of
approximately 10 times on a single node of Hawk and approximately 9 times on SuperMUC-
NG. Also, in case of the fpoe dataset we can observe a significant speed of almost factor 2.
This speed-up is mostly caused by two optimizations that we implemented in the previous
months. First, the re-ordering of tasks when distributing them among the MPI-workers. We
applied heuristics to encourage long tasks (consisting of the simulations of tweets which may
be retweeted frequently) being scheduled first. The second optimization technique we
applied is to translate certain hotspots of the code into efficient machine code via help of the
python package Numba. Both of these improvements, together with extensive analysis of
their impact on various processor architectures, are described in Section 5.3.
3.3.3 Experiment 2 (SN-Simulator)
The performance improvements of the SN-Simulator caused the running time of our previous
experiments to become quite low (<30 seconds starting with 8 nodes on SuperMUC-NG). This

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 60 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

made it hard to estimate the scalability of our application. Therefore, we also performed a
larger experiment based on our two bigger data sets fpoe and covid. Additionally, we
increased the sources and samples parameters to 5000 and 10000, respectively. This causes
the number of simulated tweets to increase by a factor of roughly 1250 compared to the
previous experiment. Furthermore, we supplied our application with additional input files
(corr and discount-factor) that allow further fine-tuning of the simulation model. This leads
to simulations more closely match the behaviour that can be observed in the real world.
Additionally, this increases the computational demands of our simulation. Due to the high
resource requirements of this experiment, we performed the run for each data point only
once.
3.3.3.1 Results

nodes (log)
1 2 4 8 16 32 64 128

exe
cuti

ont
ime

[s]

0
10000
20000
30000
40000
50000
60000

Hawk covid19 Hawk fpoe
SuperMUC covid19 SuperMUC fpoe
Altair covid19 Altair fpoe

Figure 30. Time required by v0.3 of our SN-Simulator for the simulation of the covid19 and fpoe data sets onHawk, SuperMUC-NG and Altair for an increasing number of compute nodes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 61 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

nodes (log)
1 2 4 8 16 32 64 128

spe
ed-

up

1

10

100

Hawk covid19 Hawk fpoeSuperMUC covid19 SuperMUC fpoeAltair covid19 Altair fpoelinear
Figure 31. Speed-up of v0.3 of our SN-Simulator in comparison with the linear speed-up denoted by “linear”

cores
0 2000 4000 6000 8000 10000

core
hou

rs

0
1000
2000
3000
4000
5000
6000

Hawk covid19 Hawk fpoe
SuperMUC covid19 SuperMUC fpoe
Altair covid19 Altair fpoe

Figure 32. Core hour budget required to complete the simulation when supplied with a certain amount ofcores. On the x-axis we plot the number of CPU nodes involved in the simulation. On the y-axis the overalltime required times the number of cores used.

3.3.3.2 Analysis
As we can see in the first plot (Figure 30), Hawk performs best for both datasets when
executing the simulations on the same number of nodes. We suspect that this is a result of
the increased number of processing cores per node compared to SuperMUC and Altair (128

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 62 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

vs 48). In the Figure 31, which describes the speed-up of our application, we can also see that
our application scales very well until roughly 32 nodes. From this point on the benefit of
adding additional nodes decreases. After roughly 64 nodes on Hawk the performance of the
application starts to degrade. On SuperMUC we only observed this in the run with 128 cores
(Figure 31). Again, we suspect that this threshold is reached sooner on hawk due to the larger
amount of CPU cores involved in the computation, which increases the overall communication
overhead. The third plot (Figure 32) serves as a comparison between the systems on a per-
core instead of per-node level. When employing a similar amount of cores, the execution of
our application requires roughly the same time on all systems. Altair with its Intel Xeon
Platinum 8268 processors takes a slight edge compared to the other systems. Note that an
application that follows an ideal linear speed-up would appear as a horizontal line in this plot.
For our applications this is roughly the case until starting from approximately 3000 cores the
overall core hour requirement increases.
3.3.4 Experiment 3 (KPM)
In this experiment we consider the KPM application. This experiment mostly serves as a
comparison of the new version (v0.2) to the previous version (v0.1) of our application. We
calculate the eigenvalue histogram of the full pokec friendship network mentioned in Section
3.3.1.1. This graph consists of more than 998k nodes and can be found on [25]. We set
intervals to 192, samples to 512 and degree to 62. Note that an experiment with the same
input graph was performed in Deliverable 3.4. However, in that experiment we used different
values for intervals, samples and degree (101, 200 and 300, respectively). Due to a
different approach in distributing the workload among the CPU cores we can no longer
support these parameter values in the new KPM version. While this does not allow for an
exact comparison, we note that the overall work required for both these selections of
parameters is very similar. This is because the overall computational effort is spent to perform
intervals*samples*degree many matrix vector multiplications. In both, the experiments
with our new and old version, this amounts to roughly 6,000,000 such multiplications.
Therefore, we feel that a comparison to the results of the old version presented in Deliverable
3.4. is still valid. Finally, we note that we only performed a single run for each data point due
to the high resource requirements.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 63 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

3.3.4.1 Results

nodes (log)
1 2 4 8 16 32 64 128 256 512 1024

exe
cuti

ont
ime

[s]

100

1000

10000

100000

Hawk v0.2 Hawk v0.1
SuperMUC v0.2 SuperMUC v0.1
Altair v0.2

Figure 33. Time required to compute the eigenvalue histogram for an increasing amount of compute nodes onHawk, SuperMUC-NG and Altair. Comparison of our new version (v0.2) to the old version (v0.1) of our KPMapplication.

nodes (log)
1 2 4 8 16 32 64 128 256 512 1024

spe
edu

p

1

10

100

1000

Hawk v0.2 SuperMUC v0.2 Altair linear

Figure 34. Speed-Up of v0.2 of the KPM application. The linear speed-up is denoted by “linear” and stated forcomparison.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 64 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

cores
100 1000 10000

core
hou

rs

0
1000
2000
3000
4000
5000
6000

Hawk v0.2 Hawk v0.1
SuperMUC v0.2 SuperMUC v0.1
Altair v0.2

Figure 35. Core hours required to perform complete the eigenvalue histogram computation when supplied acertain amount of cores. Comparison of the new (v0.2) and old (v0.1) version of our KPM application.

3.3.4.2 Analysis
As we can see in the first figure (Figure 33), the performance of our application increased on
both Hawk and SuperMUC-NG. For Hawk the performance increased by a factor of 2-3 in all
observed runs. For SuperMUC-NG, the only run in which we observed worse performance for
our new version is the one with 256 nodes. We suspect that the reason for this is a bug that
we discovered in version v0.1 of our KPM application, which caused certain tasks to be
dropped in case the amount of compute cores became too high. This error has since been
fixed. We can also see in this plot that runs on Altair behaves similar to those on SuperMUC-
NG when supplied with a similar amount of cores. This makes sense as both systems have the
same amount of cores (48) per node. As observable in the second plot (Figure 34), we can see
that the speed-up of our application is close to linear on all systems. Only for 512 nodes on
SuperMUC-NG (24576 cores) the speed-up starts to worsen slightly. Another interesting
comparison is presented in the third plot (Figure 35), where we look at the total number of
core hours required to compute the histogram. All data series follow a strong horizontal trend,
which further illustrates the near-linear speed-up of our application. Additionally, we can also
observe a phenomena which we already discussed in Deliverable 3.4: v0.1 of our application
performed significantly worse on Hawk than on SuperMUC. For the new version of the KPM
application this gap between Hawk and SuperMUC is significantly smaller. We suspect that
this improvement is caused by our newly employed ccNUMA aware task distribution, which
we describe in detail in Section 5.3. The idea is to store multiple copies of the input graph in

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 65 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

the shared memory of each node to avoid contention. As the processing unit on Hawk is
equipped with 8 NUMA domains and 128 cores, the performance gain is more significant than
in case of SuperMUC. Compared to the cost of roughly 5000 core hours in the previous version
of our software on Hawk, the new version now only requires approximately 2000 core hours.
All of the above indicates that it is essential to account for the number of NUMA domains in
the processor architecture to leverage full performance of our application. In Section 5.3 we
give a more detailed analysis of the effect of these ccNUMA improvements when running our
application on various different processor architectures. What we can also see in this third
image is that, just as in case of the SN-simulator, Altair slightly tops the other systems from an
efficiency standpoint (lower amount of core hours per execution).

3.3.5 Experiment 4 (KPM)
In this section we consider our cutting-edge version v0.3 of the KPM application. Compared
to version v0.2 this version comes with an additional parallelization axis. This makes is suitable
for runs with a huge amount of cores. Before, a single task for MPI worker consisted of one or
more matrix-vector multiplications. With v0.3 it is now possible to further split and distribute
each of these multiplications among multiple cores, which allowed us to achieve a run with
more than 130k cores. As part of the experiment in this section, we performed a weak scaling
test on Hawk. More precisely, we fixed the parameters samples to 128 and degree to 300 and
consider the same input graph as in Experiment 3 (the full pokec network consisting of more
than 998K nodes). The intervals parameter is set to (#nodes / 4), which causes the amount of
work required to increase proportionate to the number of supplied compute nodes. On the
side of the output, this has the effect of letting the resolution of the computed eigenvalue
histogram (number of bins) depend on the number of nodes. Due to the large amount of
resources involved, we performed the experiment once for each of the node amounts in the
set {4,16,64,256,1024}. We used the following software environment for our experiments
(Table 15):

Software / Package Version on Hawk
Python 3.8.6
Numpy 1.19.4
Numba 0.50.1
Scipy 1.5.4

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 66 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Mpi4py 3.0.3
MPI Library MPT 2.23
KPM Version v0.3

Table 15. Software stack for Experiment 4 on Hawk.
3.3.5.1 Results

nodes (log)
4 16 64 256 1024

exe
cuti

ont
ime

[s]

0
20
40
60
80
100
120
140
160
180

Hawk v0.3
Figure 36. Weak scaling experiment. Time to compute the eigenvalue histogram with an increasing numberof intervals for an increasing amount of compute nodes. Experiments performed on Hawk with KPM v0.3.
3.3.5.2 Analysis
The newly introduced parallelization strategy allowed our application to be executed
successfully on up to 1024 nodes (131,072 cores). For 64, 256 and 1024 the application
behaves closely to the ideal behaviour (Figure 36). That is, even though the overall work as
well as the node amount is multiplied by 4 in each step, the execution time remains similar
(more precisely it remains in the interval [132,160]). It seems that the newly introduced
parallelization strategy of distributing the matrix-vector multiplications over multiple cores
indeed lends itself to runs with a large amount of cores. We are currently investigating the
increase in running time which occurs when increasing the number of supplied compute
nodes from 4 to 16 and from 16 to 64.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 67 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

4 Ensemble scenarios
Ensemble scenarios constitute an essential approach to conduct computation composed of
series of applications run in parallel. In all HiDALGO pilots it is used to efficiently test
simulation facets on data sensitivity and validation. Due to the increased requirements of this
approach, it is necessary to check the behaviour of the application in terms of hardware and
software.

Data repository folder
https://gitlab.com/eu_hidalgo/benchmarking/-/tree/master/deliverable_3_5/ensamble_scenarios

Specification of the infrastructure used for ensemble scenarios is the same as used for
scalability tests in chapter 3.

4.1 Migration pilot
Migration predictions with the Flee code are normally performed using ensemble simulations.
We need to use ensembles for instance to: (a) account for the probabilistic nature of the
agent-based model, (b) analyse the sensitivity of the assumptions in our model for a given
conflict, (c) perform a forecast that takes into account a variety of possible conflict
progressions. We provide a detailed example of ensemble runs in the context of sensitivity
analysis in [26], while we present an example of ensemble runs in the context of conflict
forecasts in [27], and more recently in a more applied example in D4.4. In this deliverable we
focus on an ensemble scenario that helps account for the probabilistic nature of the agent-
based model (a).
4.1.1 Scenario description
4.1.1.1 Goal
To simulate the forced displacement in South Sudan conflict in 2016-2017 and consider the
different climate conditions in this country, we need to address the combination of perceived
levels of safety, accessibility or weather conditions in our constructed model. This
combination affects refugees’ decision to move and their fleeing speed. Besides, simulating
this combination realistically requires a coupled approach. Therefore, we implemented a

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 68 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

multiscale model coupled with weather data. This scenario helps us to investigate the effects
of the multiscale simulation and its coupling with weather data on refugees’ decisions to
move and their speed.

4.1.1.2 Model description
In this model, we defined the whole model with two sub-models, namely, macroscale and
microscale models. Each sub-model is executed independently and agents pass between
them during the simulation. In this model, each location in the location graph, where agents
pass through the coupling interface, should be registered as coupled locations. In addition to
coupled locations, all microscale model’s conflict locations should be added to the macroscale
model as ghost locations. It means that although they are added to the macroscale model,
they don’t have any link to other macroscale locations and this is why they are named ghosts
locations. They are a special type of coupling locations where (a) themacroscale model inserts
agents into these locations according to the normal FLEE agent insertion algorithm and (b) at
each time step, the coupling interface transfers all agents from each ghost location to the
microscale model. Regarding required resources, like previous conflict scenarios, we need
population and conflict data provided by ACLED [28], validation data extracted from UNHCR
portal [29], and some other resources for creating location graph.
At each time step, both microscale and macroscale would run and exchange data to trigger
the next run. The workflow diagram of this scenario is shown in Figure 37.

Figure 37. Multiscale Migration Simulation Workflow Diagram. . Multiscale simulation (yellow boxes) andcoupling with Flare (red box) are new models for generating realistic progressions and forecasting howconflicts evolve.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 69 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

4.1.1.3 Coupling and dependencies
In this scenario, we coupled thesemacroscale andmicroscalemodels cyclically in two different
ways: using file I/O and using the MUSCLE3 [30] coupling environment. For the microscale
model, we incorporated weather factors including precipitation and river discharge datasets.
File I/O is a coupling approach to exchange data between two sub-models. By establishing
this approach, exchanged data, such as the number of new agents added to each location,
can be passed between sub-models using a local shared file system. In this work, the number
of all agents passing between sub-models through coupled and ghost locations are stored in
the format of CSV files. Both sub-models fill their coupled CSV files, in a parallel fashion, to
make sure that both sub-models are synchronized in terms of simulation time steps when all
necessary coupled inputs files are checked at the start of each iteration.
To implement our coupling strategy with MUSCLE3, we defined two main compute elements,
macro and micro, which represent the macro and micro models, and two manager elements,
micro_manager and macro_manager, which handle the inputs from multiple instances of
each sub-models. By starting the simulation, each lunched sub-model will be registered into
the coupling system by MUSCLE3 manager. In this example, 10 concurrent macro and micro
sub-model will be executed. Each sub-model instance will simulate the agent’s movement
between locations on each day. To exchange the data, since we have multiple instances, we
designed a manager sub-model to (a) gather data from each instance of the sub-models, (b)
combine the founded new Agents per location by each instance into one, and (c) pass to the
other model, e.g., macro_manager will collect and combine data from all macro instances,
and pass to all micro instances.
4.1.2 Tests
To examine the performance of the HiDALGO software, as well as the aleatoric uncertainty of
the coupled migration model, we perform a benchmark test of four different ensemble sizes:

 100 runs, single core per model.
 100 runs, 4 cores per model.
 500 runs, single core per model.
 500 runs, 4 cores per model.

The results of South Sudan Multiscale simulations with file coupling approach, with and withoutweather data coupling are presented in Table 16 and Table 16. The average relative difference of theSimulation Approaches for different ensemble sizes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 70 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

. The former presents the average relative difference of the Simulation Approaches for
different ensemble sizes and the second table, presents the total execution time of the
Simulation Approaches for different ensemble sizes.

Approaches 100 runs1 core 100 runs4 core 500 runs1 core 500 runs4 coreMultiscale Simulation (filecoupling) 0.435 0.435 0.435 0.435
Multiscale Simulation (filecoupling)+ Weather Coupling

0.435 0.436 0.437 0.436

Table 16. The average relative difference of the Simulation Approaches for different ensemble sizes.

Approaches 100 runs1 core 100 runs4 core 500 runs1 core 500 runs4 coreMultiscale Simulation (filecoupling) 17091.51 13042.84 16376.90 12513.80
Multiscale Simulation (filecoupling)+ Weather Coupling

65227.17 21361.19 65887.81 22431.62

Table 17: The total execution time of the Simulation Approaches for different ensemble sizes.
4.1.3 Analysis
Table 16 and Table 17 illustrate the results of these simulations on the Altair supercomputer,
including the total validation error and the total execution time for the aforementioned tests.
Also, we deliberately avoid minimizing the validation error by calibrating existing model
parameters against data. Because, it might lead to over-fitting which not only reduces the
reusability of our simulations in new contexts, but also makes it highly sensitive to the (often
incomplete) validation data sources we use. Therefore, we mostly incorporate data sources
as model input, and combine them with our general knowledge and qualitative data about
human behaviour.
As results show, the total validation error of both multiscale approaches with or without
weather coupling, are equal in all ensemble runs. However, the total execution time of
multiscale approaches, in 4 core runs are lower than 1 core runs. Furthermore, in case of
weather coupled approaches, there is a significant increase in execution time which can be
interpreted as coupling overhead of such approaches in comparison to the former

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 71 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

approaches. These results show us that weather coupling in South Sudan did not influence
the results.

4.2 Urban Air Pollution
The simulation part of the UAP Pilot is mostly done in a sequential way, as current pollution
concentrations do constantly depend on not just the current emission, but also concentration
at a previous time frame. There are some uses, however, where commissioning simulations
in ensembles are useful. Some examples include (a) sensitivity analyses, (b) parameter
validation or (c) wind field generation for model reduction. In this deliverable we investigated
the computational cost properties of the sensitivity analysis of the boundary condition of air
flow.
4.2.1 Scenario description
4.2.1.1 Goal
The goal of the analysis is to assess how fluctuations in the input data, in this case data for
boundary conditions influence the results of our simulation, how it affects pollution levels at
validation points, or other points of interest. Atmospheric wind conditions do affect pollution
spread; however, even minor changes may have drastic effects locally, which makes these
analyses essential. Additionally, our goal is also to assess the validity of the ensemble data,
which is obtained from ECMWF with the means of Polytope [31].
4.2.1.2 Model description
In this scenario, the evolution of the pollutant spreading in the city of Győr is analysed for a
predefined duration for a chosen date (15th November 2021). Weather boundary conditions
are set from ECMWF weather data, and pollution emission is derived from the results of the
traffic simulation based on camera data from the same day. For these runs, the same meshes
are used as for benchmarking, i.e., the small, middle, and large mesh with 728k, 3.4M and
14M cells, respectively. The usual input set is used to analyse pollution spread in the city and
sample pollution concentrations at validation points with additional simulations, where wind
field boundary conditions are varied with an ensemble set of weather data.
Sensitivity analysis of the input data, in this case using ECMWF provided meteorological
ensemble data is done with ensemble data provided by ECMWF itself. For the current
investigation a batch of 50 additional boundary condition variations (ensemble scenarios) are
used, in addition to the original boundary condition (normal scenario).

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 72 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 38. Wind profile components: west-east (left) and north-south (right) depending on height for variousensemble scenarios (grey and black) and the normal scenario (red). The minimum and maximum coveringcurves for ensemble scenarios are also plotted (green). Also, the top of the simulation domain is also shownat 500 meters (purple).
In Figure 38 we can observe the wind profile behaviour for the normal and ensemble
scenarios, including some particular profiles in black from the ensemble for more accurate
observation. The height of the model is also plotted at 500 meters, so anything on the right
side has no influence on the simulation results.
At the end of the simulation, pollution rates are sampled at data points given by two Bosch
sensors (H007 and H0011) and the pollution monitoring station GYOR1.
4.2.1.3 Coupling and dependencies
For data coupling, traffic simulation and weather data acquisition were done separately.
Normal and ensemble weather data download via polytope interface and converted
to .windxy UAP boundary condition file format for all scenarios separately, yielding 100 files
for ensemble and 2 files for normal scenarios. Traffic simulation is done for the 15thNovember,
2021, and pollution emission is calculated afterwards, which is mapped onto all three 3-
dimensional mesh models and stored in the .emi UAP emission rate file format.
For the scenarios investigated, no data exchange between simulations is necessary, data is
aggregated after postprocessing.
4.2.2 Tests
To execute the ensemble scenario investigation, a separate code developed to prepare
appropriate case directories and separate single core and multi core part of the simulation.
The total simulated time in the ensemble scenarios was limited to 1 hour (15th November
2021 from 6AM to 7AM) to limit core hour consumption.
Altogether, the following tests were executed:

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 73 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

 normal run with 3 mesh sizes,
 ensemble runs with low mesh resolution to test the preparatory code,
 ensemble runs with middle mesh resolution for the real investigation.

All simulations were run on the HAWK cluster.
4.2.3 Analysis
Table 18 summarizes runtime and used number of cores used for the simulation. Only the
simulation part is shown, data import and domain decomposition, which are single core parts
are omitted. The total number of cores for the middle mesh ensemble scenario exceeds
100 000 cores.

Mesh size # of runs RuntimeSimulation cores persimulation total numberof cores core hours
728k 51 172 128 6528 312
3.4M 51 277 2048 104448 8037
14M 1 934 2048 2048 531

TOTAL: 113024 8880
Table 18. Runtime used cores and core hours for all ensemble and normal runs for various mesh sizes.

The total runtime of the ensemble simulation for middle mesh size remains within 5 minutes,
compared to ca. 3.9 hours, if a total of 16 nodes / 2048 cores are used, and 18.1 hours, if only
one node is used.
Normal scenario results show good mesh independence for sampling location GYOR1 with
lower spread of the ensemble scenario values, too. The sample locations H007 and H011 show
poorer mesh independence and higher spread in ensemble scenario values.

4.3 Social Network
The current twitter simulation model relies on multiple parameters, which can heavily
influence the accuracy of simulation run. Values for these parameters can either be set
manually or learned from a given data set. To learn these parameters, it is beneficial to
commission an ensemble of simulation runs to quickly test various different parameter values
in parallel. In this section, we investigate the scalability and computational cost of such a
learning approach.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 74 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

4.3.1 Scenario description
4.3.1.1 Goal
The current twitter simulation model relies on 6 parameters (3 continuous, 2 discrete, 1
binary) that currently have to be chosen independently for each feature vector. Our efforts
focus on tuning the 3 continuous parameters (i.e. propagation_probability,discount_factor, and correlation_probability) minimizing the error of the
retweet probability and the mean number of retweets. In the currently considered
configuration of the binary parameter, the propagation_probability can be directly
calculated from input data. Therefore, it only remains to find optimal discount_factor
and correlation_probability values that minimize the error of the mean number of
retweets.
The goal is thus to optimize a stochastic function over a multidimensional search space.
Methods for stochastic optimization have most recently been explored in the context of
hyperparameter tuning. The most basic approach here is a grid search, that is an exhaustive
search over some chosen (uniform) discretization of the search space. This approach is
visualized in Figure 39, where we divide the 2-dimensional search space into a 9x9 grid. Each
point corresponds to an assignment of the discount_factor andcorrelation_probability parameters to certain values. With each such selection of
parameter values, a simulation is run to assess their performance with respect to the error in
the mean number of retweets (compared to our ground-truth data).

Figure 39. Grid search example. The search space is partitioned into a 9x9 grid and at each point a pair ofparameters is evaluated.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 75 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Choosing this approach has three benefits:
1. We gain valuable insight in the global behaviour of the error function and thus our

model.
2. The best points of such grid can be used as starting points of a subsequent much finer

grained local search. One can then reasonably expect the resulting points to be very
close the global optimum.

3. The algorithm lends itself to massive parallelism as multiple points can be evaluated
independently in parallel.

4.3.1.2 Model description
We search a 20x20 grid for each of the 132 feature vectors of the fpoe_20201110 dataset
(see Section 3.3.1.1 for a description of this data set). The corresponding follower graph we
use as input has 15k nodes and 63k edges. Each point of the grid search is evaluated using 400
sources with 1000 samples each. Therefore, there are 20*20*132*400*1000 = 21.12 *
10^9 simulations to be run in total.
4.3.1.3 Coupling and dependencies
As input data we use the follower-followee relationship graph and the ground truth retweet
data of the fpoe dataset that were crawled on twitter and can be found on the CKAN. This
data is read on a single head node that then also orchestrates the simulation and aggregates
the results. The simulations required for each data point can be performed independently
from the simulations of other data points.
4.3.2 Tests
We performed the ensemble run on the SuperMUC-NG supercomputer and repeated it 4
times with an increasing amount of cores times to assess the scalability of our approach. Due
to the high amount of cores used (more than 98k) each run was performed only once.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 76 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

cores0 20000 40000 60000 80000 100000 120000

tim
e[s

]

2000
2500
3000
3500
4000
4500
5000
5500
6000

Time required for the 20x20 grid search

Figure 40. Scalability of the grid search approach for the fpoe dataset on SuperMUC-NG.

In order to quickly assess the quality of the obtained parameters values fordiscount_factor and correlation_probability, we compare them to the
behaviour of the default parameters (discount_factor = 1 andcorrelation_probability = 0). For the obtained parameter values of the grid search
as well as default experiment, we performed a simulation run with the fpoe_20201110 data
set (400 sources and 1000 samples) to measure the mean absolute percentage error (MAPE)
in the number of retweets (compared to the ground truth data). The results are depicted in
Figure 41. A more thorough analysis of the obtained parameters, including a comparison with
additional methods for learning parameters, is reported in Section 6.2 of Deliverable 4.4.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 77 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

MAPE of for each of the 2 experiments

default grid search

Figure 41. MAPE of the fpoe data set for each of the 3 experiments.

4.3.3 Analysis
We start with a discussion about the scalability of our approach. Going from roughly 12k to
24k cores we can still observe a speed up approximately factor 1.38. However, the benefit of
adding additional cores after roughly 40k cores is limited: the running time improves only
slightly when increasing the cores from 49152 to 98304. We suspect that this phenomenon
could by avoided by running the search on an even larger (i.e. more fine-grained) grid. While
originally this was our intention, we encountered a bottle-neck with our current
implementation that uses a single root process that dispatches tasks to workers. In particular,
scenarios larger than the above exhausted the limited main memory on the root node. In the
future, this problem could be circumvented by employing an approach in which multiple root
nodes are used to dispatch tasks and collect results from the workers.
When it comes to the quality of the obtained parameters, we can see in Figure 40 that the
grid search yields similar results as the binary search approach. Both of these approaches
yielded a MAPE in the number of retweets of below 20%. There is also an additional benefit
of the grid search is not visible in the chart above: we obtained multiple parameter values
close to the maximum. We are currently working on an implementation of a local searching
approach that allows us to these parameter values to find an improved global optimum.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 78 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

5 Analysis and optimization
This section thoroughly analyses pilots’ applications and provides indications to improve their
efficiency.

Data repository folder:
https://gitlab.com/eu_hidalgo/benchmarking/-/tree/master/deliverable_3_5/optimization

5.1 Migration Pilot
5.1.1 Goal
The primary goal of this investigation is to improve the overall performance of the Flee
application. To reach this goal, we propose to use the Numba [32] python library to optimize
hotspots in the application and overcome the limits of the standard python interpreter. The
proposed approach is examined using real data from the South Sudan (ssudan) conflict. This
study explores a variety of modern parallel architectures, including a single computing node
with two processors based on x86-64 and ARM-based architectures. Table 19 and Table 20
outline explored computing platforms and software environments, respectively.

Type of CPU Codename Cores Freq.
[GHz]

Memory

2x AMD Epyc 7763 Milan 2x 64 2.45 2x8x32GiB DDR4-3200
2x AMD Epyc 7742 Rome 2x 64 2.25 2x8x32GiB DDR4-3200

2x Intel Xeon Platinum
8268

Cascade Lake 2x 24 2.9 2x6x16GiB DDR4-2933

2x Huawei Kunpeng 920 TaiShan
(ARMv8.2)

2x 48 2.6 2x8x32GiB DDR4-2933
Table 19. Specification of testing platforms.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 79 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Software / Package All Platforms
Python 3.8.11
Numba 0.53.1
Numpy 1.20.3
Pandas 1.3.1
Mpi4py 3.0.3
MPI Library OpenMPI 4.0.2

Table 20. Software stack for SN Simulator and KPM benchmarks.

5.1.2 Performance analysis and the Numba-based optimization
To employ the Numba-based modification, we distinguish the main hotspots of the flee code.
The performed analysis indicates four computing Kernels that jointly consumemore than 70%
of the total execution time. These Kernels refer to the most notable functions of the flee
application and are mainly associated with generating random values with probability
support.
More precisely, Kernels 1, 2, and 3 are part of the evolve function responsible for
calculating the probability that a moving agent will select a given route and making the
probabilistic route selection. In this case, the 1st Kernel determines the weights of each
adjacent link, the 2nd Kernel normalizes theweights, while the 3rd Kernel returns the eventual
movement decision made. The last 4th Kernel is included in the addAgentTime function
and selects the conflict zone where a given newly spawned agent emerges, based on a
population-weighted probability function.
All of these Kernels are provided with the usage of the NumPy python library, which is eligible
for performance improvements by Numba. The selected Kernels are marked as Numba
functions and translated into machine codes during application execution (just-in-time
compilation). As a result, every Kernel compiled once is further used tens of millions of times
in a typical simulation run. However, while the compilation process accomplishes for Kernels
1-3, we observe some compilation issues for the last 4th Kernel. We reveal that the current
version of the Numba python library does not support generating a set of random samples
from the given array with population-weighted probability, required by the last Kernel. In
consequence, we are not able to employ Numba for Kernel 4.
Figure 42 illustrates an evaluation of the proposed approach using different computing
platforms and simulating migration for South Sudan (ssudan) conflict. As shown in Figure 42a,

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 80 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

enabling Numba-based modification for the basic version of code reduces the total execution
time and improves the overall performance achieving the speedup in a range from 1.4x to
1.8x. The applied analysis also indicates a significant performance improvement for Kernel 2
and Kernel 3 (see Figure 42b). In this case, employing Numba leads to about 10x and up to 23x
faster execution of the Kernel 2 and Kernel 3, respectively. In contrast, Kernel 1 with enabled
Numba accelerates computations of about 1.1x for all performed tests. At the same time,
Figure 42c shows a percentage of the total execution time measured separately for every
Kernel and the aggregate percentage obtained for all selected Kernels.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 81 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 42. Evaluation of the Numba-based optimization applied for the flee application: a) performancecomparison for studied application with enabled and disabled Numba optimizations, b) Partial performancegain measured for a given Kernel separately, and c) the percentage of total execution time for selectedmeasured for the basic version of the application.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 82 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

5.2 Urban Air Pollution Pilot
5.2.1 Goal
The primary goal of this investigation is to improve the overall performance of the UAP solvers
by means of optimization the OpenFOAM application and utilization of GPGPU accelerators.
The pollution dispersion module is the most computationally intensive part of the UAP pilot.
Real world use cases range from simulating 1 day up to 1-year real time with street level
resolution from 4 to 1 meter. Estimating runtime using chapter 3 results for simulating a
1-year scenario on HAWK would take 5.6 days for the low mesh size with 4 nodes, 22.7 days
for the middle mesh size with 16 nodes and 98.6 days for the high mesh size with 256 nodes.
Reducing these simulation times is critical to get results in a reasonable time frame.

5.2.2 Analysis and conclusions
5.2.2.1 Excellerat project collaboration
The EXCELLERAT project [33] is a single point of access for expertise on how data
management, data analytics, visualisation, simulation-driven design, and Co-design with high-
performance computing (HPC) can benefit engineering, especially in the aeronautics,
automotive, energy and manufacturing sectors. The goal of EXCELLERAT is to enable the
European engineering industry to advance towards Exascale technologies and to create a
single-entry point to services and knowledge for all stakeholders of HPC for engineering.
HiDALGO developed the Urban Air Pollution Pilot (UAP) andwas supported by the EXCELLERAT
team during the pilot’s application improvement phase. The primary goal of the collaboration
was to improve UAP’s performance on HPC systems, that uses OpenFOAM in its CFD module
for pollution dispersion simulation. This included three components: On the first level, the
team of both HiDALGO and EXCELLERAT experts aimed to improve the mesh quality withsnappyHexMesh. The second part of the collaboration dealt with the optimisation of the
steady state simulation using simpleFoam and then the third, improving transient
simulation with pimpleFoam.
The team used snappyHexMesh for meshing instead of octree mesher. Advanced pre-
processing enabled finer surface and edge fit. Also, higher quality mesh comes with lower
generation time for same resolution.
For the steady state simulation with simpleFoam wide range of numerical schemes were
investigated for stability, runtime, and parallel performance. Unnecessary IO was turned off,

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 83 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

and mesh cell index renumbering and multilevel decomposition was issued and incorporated
into the automatic workflow. Improvements were most significant at lower mesh sizes.
EXCELLERAT proved to be an invaluable partner in helping and consulting HiDALGO for parallel
performance optimisation. The issued optimisations proved to have a factor 5 improvement
of the speedup on our cluster, from 18 to 102 for a 1 million cell mesh. Larger meshes of
almost 10 million cells also had a speedup improvement from 49 to 77. This greatly
improved parallel efficiency, from around 8% to more than 47%. This success was efficiently
achieved within a few months thanks to the excellent exchange of knowledge and
cooperation. Previously we had several performance issues, as development was focused on
feature integration and automatization.

5.2.2.2 GPU solvers
The solvers were tested on the following GPUs:

 NVIDIA Tesla V100,
 AMDMI50.

More information on above architectures can be found in deliverables D5.5 [34] and D5.8 [6].

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 84 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

5.2.2.2.1 RapidCFD

Figure 43. Performance comparison between RapidCDF and OpenFOAM obtained for different numbers ofdevices and a variety of domain sizes: a) Computation time [s] (left) and b) Strong scaling speedup (right).

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 85 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

To assess the GPU capabilities of OpenFOAM variants, 3 possibilities were considered:
coupling OpenFOAM with PETSc using petsc4Foam, foamextend version 4.1 and RapidCFD
[35]. Both petsc4Foam and foamextend use GPU-s only in the case of solving the discretized
problem and with RapidCFD all calculations are done on the GPU. This makes RapidCFD the
best candidate to port the UAP pilot to.
Before porting the pilot, preliminary benchmarks were issued to assess the performance of
the code. The latest version of RapidCFD <version fromMay 13th, 2020> was compared to the
compatible OpenFOAM version 2.3.1. The tutorial case motorbike was chosen for the
comparison, as it uses one of the tools also used in UAP, simpleFoam.
To assess performance meshes of various sizes were generated from 300k to 40M. Results for
all, but the smallest mesh size is presented on Figure 43. For this benchmarks NVIDIA V100
GPUs were used and compared to dual socket Intel Xeon 8268 CPU nodes. The comparison
was made for 1 GPU – 1 node, scaled up to 8 GPUs – 8 nodes.

5.2.2.2.2 Fluid solver
Fluid-Solver is a 3-dimensional computational fluid dynamics solver, based on a finite volume
method that runs either in full order mode (FOM) or reduced order mode (ROM). Reduced-
Order-Modeling is based on the proper orthogonal decomposition method (POD), which has
two major steps: an offline phase consisting of a snapshot collection and singular value
decomposition (SVD) of the snapshot matrix, and an online phase for the ROM-simulation.
Fluid-Solver has been implemented for multicore computers: CPU nodes (using OpenMP) and
NVIDIA GPGPUs, of which the implementation framework is CUDA [36]. Linear algebra
algorithms are done with cuBLAS. Using CUDA with OpenGL, fluid-solver has a mode where
results can be visualized in real time.
For benchmarking purposes, we have chosen the Antwerp May 6, 2016, use case from
FAIRMODE’s Intercomparison Exercise (for more details, see D4.4). The mesh size was chosen
440.000, which results in 2.2M number of freedom (i.e. the number of floating point numbers
to be computed) in each time step. We have tested the performance on different
architectures.
Since our solver is tetrahedral-based, and uses the finite-volume method, we can
break down our algorithm into several categories: vertex, face, and cell-iterative
algorithms. Since we are using an explicit-Euler based approach, the current global
algorithm for the solver essentially consists of computing flux values by iterating through all
vertices/faces/cells (we need to iterate through vertices as well, since we’re using a 2nd order

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 86 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

spatial method). Our flux value is essentially 5 variables that we keep track of: a density (1
component), velocity (3 components), and energy (1 component).
During the very first optimization stages, we had to consider one of the most fundamental
aspects of our code; storing flux values. Two options arise: either SOA-s (Structure of Arrays),
or AOS-s (Array of Structures). This proved to be an interesting decision, since this would have
a huge effect on cache misses (ex. L2); for the solver, we ended up using AOS-s, since when
accessing one flux variable (ex. velocity), we most definitely need access to the others (ex.
density, energy). However, this isn’t always true; in some pre-processing stages, and with
visualization scripts especially, we often need to iterate per variable, while ignoring the others.
In these cases, we opted for using AOS-s, that is, storing each flux variable as its own array (a
separate array for the densities, velocities, energies).
To optimize the CPU version, we ended up using OpenMP. We didn’t directly use any SIMD
instructions, since the compiler generated assembly_code seemed to generate fairly
optimal results. It should be noted however, that we do plan on manually implementing some
routines in SIMD in the future, for further non-negligible performance improvements.
For the GPU version, we ended up using CUDA, and wrote all vertex/face/cell functions as
CUDA kernels. The only library we ended up using was cuBLAS, for matrix-vector
multiplication. We did initially use some minimum reduction-related functions from the CUB
library, from the CUDA SDK; but we ended up implementing our own code. To optimally
evaluate the performance of our CUDA kernels, and further optimize our code, we used
NVIDIA’s NSight Compute software.
We present in the results below, our benchmark for Antwerp (Figure 44). In this case, a wind-
field was computed every iteration, alongside the density and energy fields. For the FOM (Full-
Order-Model) results concerning the CPU runs on HAWK and SOLYOM,we only ran 50 seconds
and scaled the results, since we couldn’t simulate for such a long amount of time. (Since we’re
using the explicit-Euler method, with mostly constant tau steps, it is fair to assume all our
results scale linearly).
There are two parameters of interest in our benchmark; the dimension of the reduced-order
model r; and the CFL (Courant–Friedrichs–Lewy) number. Since we are using the POD, we can
raise the CFL value much higher than usual (for our FOM, the maximal value for a stable run
is roughly 0.8).
As you can see in the results below, when running in FOM mode (Full-Order-Model), the
results on an NVIDIA A100 GPU are, roughly speaking, 27x faster than on an AMD7742 CPU,
and 12x faster than an Intel Xeon Gold 4 x 6230 CPU. When considering the reduced order
model, results on the NVIDIA A100 GPU are roughly 43000x faster than the FOM on an
AMD7742 CPU.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 87 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

We provide the benchmark results below, alongside the following list of hardware we
benchmarked on:

 HAWK: 1 CPU None on HAWK Cluster
(AMD7742 256GB 128 cores)

 SOLYOM Compute: 1 CPU Compute Node on SOLYOM Cluster
(2 X Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, 32 cores, 384GB)

 SOLYOM Fat: Fat note on SOLYOM Cluster
(4 X Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz, 80 cores, 1,5TB)

 ALTAIR GPU V100: NVIDIA TESLA V100
 SOLYOM GPU V100: NVIDIA Tesla V100S-PCIE-32GB
 SOLYOM GPU A100: NVIDIA A100-PCIE-40GB

Architecture Name FOM ROM
(r=10, CFL=1000)

ROM
(r=10, CFL=2000)

REAL-TIME

HAWK 820109 2842 1500 86400
SOLYOM COMPUTE 617534 758 382 86400
SOLYOM FAT 387205 519 277 86400
ALTAIR GPU V100 86486 82 41 86400
SOLYOM GPU V100 71036 78 39 86400
SOLYOM GPU A100 30221 38 19 86400
Table 21. Runtime for Antwerp model of 434k cells for different models on various architectures.

Architecture Name FOM ROM
(r=10, CFL=1000)

ROM
(r=10, CFL=2000)

REAL-TIME

HAWK 0.1054 30.3974 57.6060 86400
SOLYOM COMPUTE 0.1399 113.9705 226.1215 86400
SOLYOM FAT 0.2231 166.4945 311.4223 86400
ALTAIR GPU V100 0.9990 1054.9291 2108.6370 86400
SOLYOM GPU V100 1.2163 1114.3455 2224.6622 86400
SOLYOM GPU A100 2.8589 2256.3833 4482.3621 86400

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 88 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Table 22. Speedup w.r.t. real-time (real-time divided by runtime) for Antwerp model of 434k cells fordifferent models on various architectures.

Figure 44. Runtime for Antwerp model of 434k cells for different models on various architectures.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 89 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

5.3 Social Networks Pilot
5.3.1 Goal
One of the essential goals of our activity is a better utilization of computer HPC resources. We
search for the trade-off and correlation between a given application and the computing
hardware to achieve this goal. We intend our work to reduce performance and memory
bottlenecks to help overcome compute and memory limitations and improve the overall
performance. We tackle a wide range of profiling scenarios and a deep code analysis to reach
these goals.
In this investigation, the analysis and optimizations are performed for two applications,
including the SN simulator and the KPMapplication (EigHist eigenvalue approach). This activity
addresses a variety of modern parallel architectures, including typically a single computing
node based on x86-64 and ARM-based architectures. Table 23 and Table 24 outline explored
computing platforms and software environments, respectively.

Type of CPU Codename Cores Freq.
[GHz]

Memory

2x AMD Epyc 7763 Milan 2x 64 2.45 2x8x32GiB DDR4-3200
2x AMD Epyc 7742 Rome 2x 64 2.25 2x8x32GiB DDR4-3200

2x Intel Xeon Platinum
8360Y

Ice Lake 2x 36 2.4 2x8x32GiB DDR4-3200

2x Intel Xeon Platinum
8268

Cascade Lake 2x 24 2.9 2x6x16GiB DDR4-2933

2x Huawei Kunpeng 920 TaiShan
(ARMv8.2)

2x 48 2.6 2x8x32GiB DDR4-2933
Table 23. Specification of testing platforms.

Software / Package All Platforms
Python 3.9.6
Numba 0.53.1

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 90 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Software / Package All Platforms
Numpy 1.21.1
Scipy 1.7.1
Pandas 1.3.2
Mpi4py 3.1.1
MPI Library OpenMPI 4.1.1

Table 24. Software setups for SN Simulator and KPM benchmarks.
5.3.2 Social Network Simulator
The Social Network (SN) Simulator is parallelized using the MPI standard for Python,
commonly known as the mpi4py module. This module provides an object-oriented interface
resembling themessage passing interface (MPI), allowing Python programs to exploit multiple
processors on multiple compute nodes.
Generally, the SN Simulator consists of two major stages. The first stage is responsible for
application initialization and is mainly focused on propagating input data across all computing
resources. In this stage, a single MPI process called master reads all required data from the
files and then replicates them between used computing nodes. Simultaneously, a single MPI
process assigned to each computing node received the input data necessary to share them
between other MPI processes assigned to a given node. Figure 45 illustrates the general
execution schema of the SN Simulator application. Even though the first stage executesmainly
sequentially, it does not limit the overall performance, and the measured cost is negligible for
all performed tests and application scenarios.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 91 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 45. General execution schema for SN Simulator.
The second – most-time consuming - stage of SN Simulator application corresponds to the
parallel computation performed according to the task-basedmaster/worker approach offered
by thempi4py.futures package. This parallelization strategy enables asynchronously executing
tasks on a pool of MPI processes called workers. Generally, the master process (i) generates
a queue of independent tasks, (ii) hands out simulations tasks to worker processes, and then
(iii) waits for the partial outcomes. In particular, for every feature vector under consideration,
multiple users are sampled, and for each user, a task to run numerous simulations is submitted
round-robin to the workers. Simultaneously, all workers receive an incoming series of tasks,
execute them one by one, and send back the partial outcomes to the master. The master
process further aggregates the returned partial outcomes to produce the final results of the
simulation. It should be noted here that MPI processes (master and workers) are pinned to
cores to avoid migration of tasks between cores.
In the basic version of the code, all workers process a similar number of tasks. However, we
observe that some workers finished processing tasks earlier than others. To explain this
behaviour, we have to look at the costs of all tasks individually.
The left side of Figure 46 shows an example of performance analysis for workload/tasks
distribution between workers, obtained for the basic version of the code. In this case, Figure
46a illustrates (i) the aggregate time of tasks performed on every MPI worker marked as a red
line, and (ii) the total execution time of simulation marked as a blue line. Figure 46b outlines
the number of tasks tackled by a given worker, while Figure 46c traces a detailed cost analysis
for tasks assigned to the worker with the slowest execution time.
The performed analysis reveals large load imbalancing betweenMPI workers. In the illustrated
example, the worker with the shortest execution time finishes simulation of all tasks more

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 92 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

than 3x quicker than the worker with the slowest execution time even though all workers
process a similar number of tasks. During profiling the cost of tasks of every worker, we reveal
that during the final part of the simulation, every worker usually processes a small pool of
very long-running tasks. This behaviour is illustrated in Figure 47a, which shows a detailed
analysis of the costs of tasks performed for all workers. Consequently, we observe that it leads
to large load imbalancing between workers and limits the overall performance.

Figure 46. Performance analysis of different versions of SN Simulator.
To alleviate the load imbalancing and improve the overall performance, we propose the 2-
step procedure for code optimizations. While we were puzzled as to why the tasks at the end
were running longer, at the first step, we propose to modify the order of tasks execution to
move the costliest tasks at the beginning of application execution.
More precisely, we add higher execution priority for the tasks that correspond to the
simulation of messages which are predicted to be more likely to be retweeted frequently and
- in consequence - require more computation. To achieve this goal, we propose to sort the
feature vectors heuristically according to their expected runtime. Since the runtime of a
simulation is dependent on the number of retweets and the target mean number of retweets

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 93 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

is known for each feature vector, this target number serves as a good heuristic assuming our
simulation parameters are aligned with this goal.
During the analysis, we then also found the reason for the long-running tasks. The feature
vectors were originally sorted lexicographically, and the first feature (i.e. the most significant
bit) corresponded to the verification status of the user. Since verified users are generally more
connected, this feature is the highest single feature predictor of many retweets. Thus, the
default ordering of the feature vectors offered by the basic version is indeed one of the worst
possible orderings.

Figure 47. Workload distributions between MPI workers obtained for different versions of SN Simulator.
Figure 46d-f and Figure 47b demonstrate an example of how the proposed modification of
the new task execution order affects load balancing, tasks distribution, and overall
performance. We investigate the proposed approach using different computing platforms
and application scenarios that mimic the flow of messages/tweets on twitter about a certain
topic at a certain time, including four datasets neos, covid19_socialdistance, vegan, and fpoe.
The performed test reveals that the proposed method reduces the load imbalancing and
improves the overall performance. The summary of the performed examination for the first

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 94 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

step of the proposed modification is delivered in Figure 48. This figure illustrates the achieved
performance gain for SN Simulator with the new order of tasks execution. The proposed
approach leads to sustained speedup due to a more uniform utilization of the workers, and it
improves the overall performance up to 2.07x.

Figure 48. Performance gain obtained for SN Simulator with a proposed order of tasks execution incomparison to the basic version.
The performance analysis also reveals significant differences in the costs of tasks (see Figure
46a and Figure 46b).We observe that even a relatively small number of heavy tasks per worker
can cause a significant load imbalance between MPI workers and strongly limit the overall
performance. The key to understanding this behaviour is analysing the tasks construction
process.
In the basic version of the code, the SN Simulator simulates the propagation of retweets in a
Twitter follower graph. In essence, two parameters determine the number of tweets that are
simulated: sources determines the number of tweet authors of which tweets originate, and
samples denotes the number of tweets that are initiated from each of these authors. All of
the samples of many simulated tweets that are initiated from a fixed author were considered
an atomic task. That is, in all of these samples many simulations were executed by the same
MPI worker process on a single core. As some authors are prone to generate tweets that are
likely to be retweeted multiple times, this caused some of these tasks to take way longer to
be processed than others. Therefore, it is harder to balance the load among workers. The
performed analysis reveals that reducing the task size can lead to better CPU utilization.
To tackle this problem, we propose to split tasks into smaller subtasks by reducing the number
of tweets simulated per task. To achieve this aim, we add a new parameter calledsample_split that helps us partition each task into sample_split many smaller
independent sub-tasks. These sub-tasks do not need to be placed on the same processor, and
therefore we can now distribute long tasks among multiple cores. However, this approach

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 95 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

allows us to manipulate the task size at the cost of additional communication overhead when
distributing tasks and collecting results.
Experimentally, we validate and examine the proposed approach, testing different sizes of
tasks for various application scenarios and a wide range of computing platforms. We
perform nine improvements and present the minimum, median, and maximum computation
times for every tested application configuration. Figure 49 demonstrates three examples of
the correlation between different task sizes and overall performance obtained for parameter
sources configured as 100, 200, and 400.

Figure 49. Impact of workload (task) size on performance.
We observe that selecting the optimal value of task size is strongly correlated with the
parameter sources for all performed tests. The performed analysis reveals that the proposed
modification of task splitting brings noticeable performance improvement for relatively small
values for source parameter, as tested configurations where source equals 100 or 200 (see
Figure 49a and Figure 49b). In contrast, the performance gain is negligible for larger source
parameter values, as in the tested case where the sources parameter is set to 400 (see Figure
49c). The whole summary of this investigation is outlined in Figure 50, demonstrating the final
gains (left side of figure) and selected optimal sample split parameter (right side of figure)
obtained for different platforms and applications scenarios.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 96 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 50. Performance gain (left) and optimal sample split parameter (right).

Additionally, to elevate the performance of our application beyond the limits of the standard
Python interpreter we employ the Numba [32] python library to optimize hotspots in our
application. We use the just-in-time (JIT) compiler provided by Numba to translate the
computing kernels that - in a typical simulation run - are called tens of millions of times and
consume more than 95% of computing time.
The function edge_sample lies at the core of our simulation. It is the primary hotspot in the
simulations of the spread of messages as it is called each time a simulated message arrives at
a user in the simulated network. The function is used to determine which followers of this
user will adopt (i.e. retweet) this message. For each of these retweeting users, the functionedge_sample then needs to be called again. This continues until the message is no longer
retweeted by any user and the simulation of the current message stops.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 97 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

The most notable operations used inside this edge_sample function are (i) the generation
of random values that follow a binomial distribution and (ii) the random sampling from a list
without replacement. Both of these operations are provided by the NumPy python library,
which is a library that is eligible for performance improvements by Numba.
The selected functions are marked as Numba functions to be translated into machine codes
during application execution (just-in-time compilation). However, to improve the efficiency
of our code, we successfully overlap the time-consuming compilation process of selected
kernels with reading input data. As a result, all workers hide the compilation process during
data loading from files tackled by the master. Figure 51 demonstrates the performancegains of the new version of code with enabled and disabled numb JIT compilationprocess obtained for different computing platforms and application scenarios.

Figure 51. Performance gain obtained for SN Simulator with enabled NUMBA-based optimizations.

5.3.3 The KPM application
In contrast to the computed oriented code of SN Simulator, the KPM application (EigHist
eigenvalue) is a memory-sensitive and demands a higher memory bandwidth. This application
is also parallelized using the MPI standard for Python. During the analysis, we reveal some
communication constraints for inter- and intra-CPU data traffic between the NUMA domains.
We use the numastat tool to track memory statistics, including allocation usage, hits and
misses on a per-NUMA-node basis for the application execution. Figure 52a illustrates the
trace memory usage for the basic version of KPM code measured on the system equipped
with two Intel Xeon Platinum 8268 CPUs and configured as four NUMA domains.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 98 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 52. Memory trace of the KPM application execution with a) one, b) two, and c) four subgroups of MPIprocesses per node obtained for the system with 2x Intel Xeon Platinum 8268 configured as four NUMAdomains (every sample is averaged over 1~second interval).

The conducted analysis reveals that the basic version of the code cannot fully take advantage
of the memory subsystem of modern ccNUMA-based multicore shared memory systems.
Notably, as shown in Figure 52a) the memory regions connected throw the NUMA domains
1, 2, and 3 are not explored fully at the end of application execution. All MPI processes read
and write data through a single NUMA domain and utilize only about a quarter of the whole
I/O memory subsystem. For explaining and solving such memory constraints, we have to look
at the data allocation process of the KPM code.
In the basic version of the code, a single MPI process reads all required data from the files and
then replicates them between used computing nodes. At the same time, a single MPI process
per every node receives required input data and shares them between other MPI processes

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 99 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

assigned to a given node throughMPI-based shared memory functionality. Assuming that the
computing systems typically utilize the first touch policy for memory allocation, a single MPI
process per node keeps all input data in its NUMA domain. Consequently, the MPI processes
assigned to cores of other NUMA domains have to load and save data using the foreign NUMA
domain.
The current top-of-the-line HPC systems offer up to eight NUMA domains for AMD-based
dual-socket servers and typically two NUMA domains for Intel-based solutions. Generally,
every NUMA domain consists of a team of cores, cache hierarchy, and memory channels that
ensure direct access to the main memory of the domain' teams of cores. To get the optimal
performance out of current machines requires the NUMA-aware movement of data around
the whole memory system. NUMA-aware computing can improve an application's bandwidth
and latency requirements on a given NUMA compute node.
This study introduces the ccNUMA aware approach to allocating all required input data within
every NUMA domain. TheMPI for python provides a communicator split operation that allows
one to create subgroups of MPI processes such that the ranks in each subgroup can share
memory in systems with shared memory. In the basic code version, a single subgroup of the
MPI process is formed and mapped on a single node. In contrast, we propose to create more
subgroups per a given dual-socket system. As a result, the master rank broadcasts all input
data between subgroups. Simultaneously, every sub-muster from each subgroup (i) receives
required data, (ii) saves them in its NUMA domain, and (iii) shares them with other MPI
processes from a given subgroup by using MPI-based shared memory functionality.
However, the essential point is mapping subsequent sub-masters with cores assigned to
different NUMA domains. As a result, every MPI process is mapped and pinned to a single
core by adding the following MPI running parameters --map-by core --bind-to core available
from used OpenMPI implementation of MPI. Afterward, the sub-masters are selected from
the pool of MPI processes in a round-robin fashion taking into account the desired number of
subgroups.
The optimal number of subgroups is expected to be related to the number of physical NUMA
domains. However, we compare the overall performance by examining different application
setups, including 1, 2, 4, and 8 subgroups per node. An example of the performed comparison
is outlined in Figure 52a-c. This figure illustrates the trace memory usage for 1, 2, and 4
subgroups on the system equipped with two Intel Xeon Platinum 8268 CPUs and configured
as 4 NUMA domains. The presented example reveals the optimal utilization of all NUMA
domains for application configuration with four subgroups. In contrast, the other setups with
1 and 4 subgroups limit exploration of three and two NUMA domains, respectively, at the end
of application execution.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 100 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 53 shows the performance gain achieved for different numbers of subgroups in
comparison to the basic version of code with a single subgroup per node. The proposed
approach leads to a better exploration of the wholememory subsystem, improving the overall
performance up to 2.5x.

Figure 53. Performance results obtained for the NUMA aware version of the KPM application in comparisonto the basic version.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 101 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

6 HPDA analysis and developments
Global Challenges applications by nature produce massive data. In this section we undertake
the challenge of utilizing highly scalable analytics runtimes and algorithms to process data in
time to be handled or provisioned by HPC applications.

6.1 Framework and Execution Environment
Apache Spark [37] has been chosen as the framework and execution environment for the
HPDA methods in HiDALGO. In the next few paragraphs, we will give a brief presentation of
Apache Spark that will help the reader understand the intricacies of its programming paradigm
and allow us to justify our findings in the benchmarking section that follows.
Apache Spark is a general-purpose framework for quickly processing large scale data that is
developed in Scala programming language. It is an open-source project highly adopted by
both industry and academia, designed to implement the distributed computing paradigm by
leveraging in-memory, fault tolerant data structures, known as RDDs. The versatility and
state-of-the-art performance that Apache Spark offers have been the main reasons behind its
adoption by HiDALGO as our choice for the implementation of HPDA methods.
Specifically engineered to support the development of big data applications, Spark comes
with a wide range of special-purpose libraries (SparkSQL, MLLib, Structured Streaming,
GraphX) that can be employed to perform tasks such as data loading, SQL querying, data
transformations, machine learning and graph analytics workloads, streaming computations,
etc. Additionally, Spark supports programming interfaces with a variety of languages (Scala,
Python, Java), a feature which has been exploited in HiDALGO.
The processing engine of Spark is built on top of the MapReduce paradigm [38], initially
implemented by Spark’s predecessor, Apache Hadoop [39]. MapReduce is a programming
model for processing large data sets with a parallel, distributed algorithm on a cluster.
In the following sections we will present the HPDA methods developed to address the needs
of the HiDALGO project, per pilot.
6.2 Migration Pilot
The contribution of HPDA in the Migration Pilot has been focused on providing methods that
can support the development of the HPC simulator. More specifically, we developed an
analytical toolset that can be used on the output of large scale HPC simulations to provide

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 102 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

insights useful for the verification of correctness of the simulated results. Therefore, we refer
to post-processing HPDA to HPC coupling.
6.2.1 Simulation Output Statistical Analytics
6.2.1.1 Purpose
In this sub-section we will present three representative queries that have been developed to
assist in the development of the Migration Pilot use case. These queries use the output of
large scale HPC simulations as input. Using Apache Spark, the data is processed and
manipulated in order to provide insights useful for the verification of correctness of the
simulated results.
6.2.1.2 Prerequisites
This application assumes that a working environment of Apache Spark and HDFS is in place.
The input data is read from .csv file and the output of the analytics written to HDFS.
6.2.1.3 Input Dataset description
The input consists of a large collection of .csv files, produced by a single simulation, containing
data describing the movement of agents in our simulated scenario. In the simulation, agents
representing people caught in conflict areas, move through a network of locations such as
towns, conflict zones and camps. Additionally, we have access to the data that was used to
produce the simulation, containing the location data.

Agent Data Files
These files are by default given a unique identifier by FLEE in the following form:agents.out.x wherex is each file's identifier (e.g. agents.out.1, agents.out.58
etc.). The agent data files follow the structure displayed in Table 25.

Column Name Sample
Value

Description
time 1 Current time step.
rank-agentid 102-1 A unique identifier for distinct agents. It

always comes in an "x-y" format, where x

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 103 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Column Name Sample
Value

Description
is the unique output file identifier and y is
the agent identifier within the file.

agent location Kajo-
Keji

Current agent location.
distance_travelled 414.0 The total distance the agent has travelled

since spawn.
places_travelled 7 The total number of locations the agent

has visited.
distance_moved_this_timestep 414.0 The distance the agent travelled during the

last time step.
Table 25. Agent data file structure and sample values

Location Data File
A single location data file is available in CSV format. This file is used as input to produce the
simulated dataset and contains information about the locations in the scenario. The location
data file follows the structure displayed in Table 26.

Column Name Sample Value Description
name Juba The location name.
region Central_Equatoria The location region.
country South_Sudan The location country.
lat 4.86086 Latitude.
lon 31.61782 Longitude.
location_type conflict_zone Location type (can hold the following values: camp,conflict_zone, town).
conflict_date 0 The time step that conflict reached the location.
population 368436 The location population.

Table 26. Location data file structure and sample values

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 104 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

6.2.1.4 Implemented Queries
Using the data described above, we have implemented the following 3 queries:

 Q1:Which agents are spawn in camps?
Q1, is rather simple: the task is to identify the agents which first appear in thesimulation in a camp location.

 Q2: How many days do the agents take to reach the first camp?Q2 requires us to identify the first camp each agent reaches in the simulations andthen calculate the number of days it has taken for them to encounter the first camp,since the agent’s first appearance in the dataset. Obviously, for agents included in theresult set for Q1, the answer would be 0 days.
 Q3: How much distance do the agents cover until they reach the first camp?

Q3 is similar to Q2. However, in this case instead of days gone by, we calculate thedistance covered by each agent since its first appearance in the dataset until theyreach the first camp. Again, for agents included in the result set for Q1, the answerwould be 0 kilometres.
All three queries focus on instances where agents are found in camps. Therefore, having
appended all agent data files into one large table, we subsequently perform a join operation
against the location data in order to access the information regarding location type. We group
these data points by agent and store them in chronological order. Next, we perform another
data transformation to filter out every datapoint that indicates the presence of an agent in a
location tagged as camp, excluding its initial appearance. Finally, we apply a number of
transformations to present the results in a readable format (csv) and write the corresponding
files. For queries Q2 and Q3, we prepare the results to be ready for visualization purposes in
the form of a frequency histogram – in the case of Q3 using a bucketed approach. The pseudo-
code of how the queries’ implementation is given below:

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 105 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

1. Read all agent data files into a single table ("agent_data").2. Read the location data files into a second table ("location_data").3. Perform a left outer join between the two tables on ("agent_data.agent_location" =="location_data.name").4. Group the result by "rank_agentid", thus creating a list of locations visited by each agent inchronological order.5. To reduce the size of unnecessary data, create a summary of the agent's journey including the"start" and "end" records (the first and last time an agent appears in the dataset).For this summary we only retain records for time steps where an agent's location changes, indicated by apositive distance travelled.6. Filter out all summary entries where ("location_type" != "camp").7. Store in column "first_camp" the chronologically first record of a camp that the agent encounters.8. Store in column "dst_first_camp" the "dst_trvld" element of the "first_camp" record.9. Store in column "days_first_camp" the difference between the time steps the agent isspawn("start.time") and the first time they enter a camp ("first_camp.time").For Q1:10. Select column ("rank_agentid") where first_camp.time == start.time.11. Write results into csv.
For Q2:12. Select columns ("rank_agentid", "days_first_camp").13. Group by "days_first_camp" and count apply count() to aggregate.14. Sort by "days_first_camp".15. Write results into csv.
For Q3:16. Select columns ("rank_agentid", "dst_first_camp").17. Use "bins" of configurable width to categorize agents according to distance travelled (e.g. 0-50kms, 51-100 kms etc.)18. Group by "bin" and apply count() to aggregate.19. Sort by "bin".20. Write results into csv.

This code segment consolidates the three queries into a single application. However, in the
corresponding benchmarking section (Chapter 7) we study the behaviour of the three both
separately and as a consolidated application.
6.2.1.5 Output description
The output of the three queries is stored in CSV format. For Q1, we have a simple list of agent-
ids that satisfy the query condition. For Q2, we have a tabular format with two columns, the
first corresponding to the days that passed between an agent first appeared in the dataset
until they reach the first camp and the second to number of agents in the simulation output
that fall into that category. Similarly, for Q3, we have a tabular format with two columns, the
first corresponding to the distance travelled by the agents until the first camp was reached.
The distance values are measured in kilometres and bucketed in bins of 50 so bin 1 translates

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 106 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

to 0-50 kilometres. The second column, again, corresponds to the number of agents in the
simulation output that falls into the specific category.

days_first_camp agents
0 105472
1 40887
2 23517

Table 27. Sample output for Q2 in tabular format.

bin agents
1 5
2 5983
3 42049

Table 28. Sample output for Q3 in tabular format.

6.3 Urban Air Pollution Pilot
The contribution of HPDA in the Urban Air Pollution Pilot has been twofold. First, we
implemented a post-processing method for calculating the Single Value Decomposition (SVD)
of snapshot matrices. Second, we worked with the simulation output data in order to provide
an analytical toolset that can answer queries regarding air pollution levels and give out
notifications for threshold violations consistent with the Directive 2008/50/EC of the
European Parliament and of the Council of 21 May 2008 [40] on ambient air quality and
cleaner air for Europe.
6.3.1 Snapshot Matrix SVD
6.3.1.1 Purpose
The singular value decomposition of a matrix A is the factorization of A into the product of
three matrices A = UΣVT where the columns of U and V are orthonormal and the matrix Σ
is diagonal with positive real entries. The SVD is a common processing task, useful in many
applications such as dimensionality reduction. For the implementation we adopted in

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 107 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

HiDALGO, we leveraged the power of Spark’s MLlib library [41] for linear algebra, which
includes an optimized function that calculates the SVD of a given matrix. Our work in this case
was focused on finding the optimal format and processing pattern for the data to be brought
in the shape that MLlib’s SVD implementation can consume.
6.3.1.2 Prerequisites
This application assumes that a working environment of Apache Spark and HDFS is in place. It
makes use of the Spark MLlib library for the implementation of linear algebra operators. The
input data is read from .csv or binary files and the output of the analytics written to HDFS.
6.3.1.3 Input Dataset description
The input consists of .csv or binary files, each of which includes the output of simulations for
air quality measurements corresponding to a specific snapshot, taken at regular intervals.
Each datapoint in the distinct snapshot files contains data to a single point of a three-
dimensional grid covering an urban area. We also have access to information on the location
of each point, which is not significant for the SVD workload.
6.3.1.4 Implementation Details
We read the data from the input files located in HDFS in parallel to optimize performance.
Our initial implementation only utilized CSV files but we also support binary input. After the
input is read into the Spark cluster, a series of data transformations follow, constructing the
data structures required to utilize the Spark MLlib version of SVD, which is thoroughly
documented [42].
Using the MLlib SVD function, we calculate the matrices U, Σ, and V and store them forreference in .csv file format.
6.3.2 Air Quality Index
6.3.2.1 Purpose
The second part of the HPDA contribution to the Urban Air Pollution Pilot focuses on
implementing themethods described in the Directive 2008/50/EC of the European Parliament
and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. That
document describes multiple methods and processes for the assessment of air quality. Taking
those into consideration, we set out to create a toolset that can be used to answer related
queries using output data from the simulations.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 108 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

More specifically, we aim at answering queries that focus on specific locations in an urbanenvironment, that cover specific windows of time, as dictated by the user. We implement thedistinct parameters specified in the Directive document, as displayed in Figure 54.

Figure 54. The criteria used for checking validity when aggregating data and calculating statistical parametersaccording to Directive 2008/50/EC of the European Parliament.

6.3.2.2 Prerequisites
This application assumes that a working environment of Apache Spark and HDFS is in place
The input data is read from .csv files and the output of the analytics written to HDFS.
6.3.2.3 Input Dataset description
As with the previous case of the Snapshot Matrix SVD, the input consists of binary or CVS files,
each of which includes the output of simulations for air quality measurements corresponding
to a specific snapshot in time, taken at regular intervals. Each datapoint in the distinct
snapshot files contains data to a single point of a three-dimensional grid covering an urban
area.
In this case we also expect an additional input from the user, indicating the aggregation
criteria as listed in Figure 54, the aggregation function (min, max, mean), the time frame for
the analytics, the specific point of interest that will be used for the query execution along with

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 109 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

a small radius of effect, and, finally, the selected pollutants the concentration of which will be
calculated and information regarding the accepted thresholds of the latter.
6.3.2.4 Implementation Details
We start by reading in the input in CSV format. We proceed to filter out the snapshots that
are out of range in terms of the time frame given by the user. Subsequently, we calculate the
distance between all points in the grid and the given point of interest and filter out all points
outside the given radius.
We then perform a grouping function according to the aggregation criteria given to us by the
user and apply the aggregating function they have indicated. For instance, in the simple case
of the one-hour values, we group all the data points by hour and then calculate the
aggregation function on the data values for each group.We factor in distancewhen calculating
mean values in a sphere by using a distance-weighted mean.
Finally, we perform aggregations according to the windowing parameters that have been
defined and compare the results against the accepted threshold numbers given by the user
and report whether there has been a violation in the time window of interest.
For reference, three sample queries that can be executed using our developed applications
are:

 Calculate possible threshold violations for a specified pollutant concentration (or wind
velocity) over 1-hour windows (a limited number of violations are acceptable) in a
specified time range. Report whether the limit of acceptable violations has been
surpassed or not.

 Calculate possible threshold violations for a specified pollutant’s concentration (or
wind velocity) over the 16 tumbling 8-hour windows with a step of an hour that cover
the duration of a day (24 hours) for a specified time range. We use a time frame of 24
hours to aggregate our findings (a limited number of violations within the frame are
acceptable). For each day in the initial time range, we can register at most 16
violations. Report whether the limit of acceptable violations has been surpassed or
not.

 Calculate a specified pollutant’s concentration or wind velocity over 1-hour windows
in the frame of a day (no thresholds are applied).

The implementation of these queries is based on the same common steps described in the
previous paragraphs with the differentiation between them being the number and
parameterization of the (last) aggregation step that takes place in the algorithm. This method
has been implemented as a parameterized application; therefore, the same code will be
executed for every submitted query.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 110 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

6.4 Social Network
The contribution of HPDA in the Social Network Pilot has been aimed on providing a way to
verify correctness and measure precision of Social Network Simulator. In effect an Analyser
has been developed that can be used on real-world data on which the Simulator is trained on,
in order to provide in-depth statistics. These statistics are lacking from original data but can
be compared with statistics extracted from the Simulator itself.
6.4.1 Social Network Analyser
6.4.1.1 Purpose
The Analyser is used to determine statistics from real-world Twitter data that can be then
compared with the output of the Twitter Simulator, in order to verify Simulator’s accuracy in
predicting Twitter user behaviour.
Presently available real-world data only informs which users retweeted and at what time, but
through HPDA methods the retweet order can also be extracted. Of special interest is the
number of users that have retweeted an original message and are n-hops away from the
original poster.
The following figure (Figure 55) presents the method of determining the distance in retweet
tree.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 111 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 55. Visualization of retweet tree with distances to particular followers

After this step the total number of nodes at each particular distance can be calculated,
producing the desired statistic. In this particular example there are 3 users at distance 1, 4
users at level 2, 2 users at level 3 and finally 1 user at level 4.
6.4.1.2 Prerequisites
This application assumes that a working environment of Apache Spark and HDFS is in place. It
requires a Python virtual environment with Graphframes library [43], which is used for graph-
related calculations. The input data is read from .csv file and the output of the analytics written
to HDFS.
6.4.1.3 Input and output data
There are two kinds input files required – a .metis file containing follower graph and a .csv file
for actual tweet data.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 112 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

The .metis file holds an adjacency list of the follower graph. It allows to build a network of
connections between users: first line contains metadata, then every line number signifies
followee and its contents follower1, follower2, follower3, etc.
The .csv contains retweet data for each of analysed tweets and is composed of one line per
tweet in following structure:author, author_feature, tweet_feature, list of retweeters, e.g.:
author author_features Retweeters
23 0,1,0,1 „[34,45,56]“
The Analyser outputs a list of n-level followers who retweeted any given tweet:

author retweets level1 level2 level3 level4 …
23 „[34,45,56]“ 2 1 0 0
65 „[34,56,67]“ 1 1 1 0
In this particular case 34 and 45 are the followers of 23 and 65, 56 is follower of 34 and finally
67 is a follower of 56.

Figure 56. Example of a retweet tree

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 113 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

6.4.1.4 Implementation details
Statistics are extracted from real-world data. The statistics extraction is performed in several
steps:

1. First, the datasets (follower graph and (re)tweet list) are loaded into Spark dataframes
format and pre-processed. This includes renaming column names, so they match,
filtering unused or unnecessary rows/columns, adding IDs, etc. To give an example, if
a tweet has not been retweeted or a user does not follow anyone, they are excluded
from further analysis.

2. Then, the node dataframe and edges dataframe are combined into a graph
representation.

3. Next, for every tweet, the following operations are made:
a. distances are calculated for all retweeters
b. resulting distance list gets sorted, grouped and differing distance instances are
counted
c. the resulting row of data is then attached (unioned) to the already existing
distance matrix; empty columns are filled in with 0.

4. Finally, after all the tweets have been processed, the distance matrix is recombined
(joined) with authors list, creating the results dataset.

5. The results dataset is then turned into a .csv format and saved to disk.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 114 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

7 HPDA benchmarking
In this section we will present the results of the HPDA methods benchmarking process. The
goal of the benchmarking has been to prove our applications’ ability to scale and gracefully
process large data-sets while retaining competitive performance. The presentation of the
benchmarking results follows the content of Section 6.

Data repository folder:
https://gitlab.com/eu_hidalgo/benchmarking/-/tree/master/deliverable_3_5/hpda_benchmarking

7.1 Infrastructure description
All HPDA benchmarks have been conducted on a dedicated Spark cluster. It consists of 24
compute nodes with 2.4GHz Intel Haswell processors and 32GB of RAM. For HPDA purposes
a 2.5TB storage space is mounted.
The software stack consists of Spark, Hadoop and supporting libraries such as Graphframes.
More details about the cluster and nodes are presented in Table 29 and Table 30.

HPDA Spark cluster infrastructure details
System PSNC HPDA testing infrastructure
Total Compute Nodes 24
Total Cores 345
Total Memory 690GB
Python 3.6.9
Scala 2.11.12
Spark version 2.4.5
Hadoop version 2.7
Graphframes library version 0.8.1

Table 29. HPDA Spark cluster infrastructure details.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 115 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Node details
Vendor Intel
Model Haswell
CPU Name Model 60
Cores per chip 16
Threads per core 1
CPU MHz 2400
Primary Cache 32 KB I + 32 KB D on chip per core
Secondary Cache 4096K
L3 Cache 16384K
Memory 32GB
OS Ubuntu 18.04.4 LTS
Disk drive HDD 7200rpm

Table 30. HPDA Spark cluster node details.

7.2 Migration Pilot
7.2.1 Simulation Output Statistical Analytics tests
Webenchmark the statistical analyticsmethods described in Section 6.2 and report our results
here. Our goal is to document our methods’ capacity to scale with hardware. We conduct
three separate experiments in order to document the performance of each of the queries
implemented.

Test runs are conducted on a dataset with the following characteristics:
 A simulation output data set from the South Sudan scenario has been created, which

comprises 128 csv files, each containing roughly 2.6 million rows,
 Time variable takes values ranging from 1 to 425, indicating days elapsed,
 The whole dataset measures up to 14.4GB.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 116 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

We scale the resources reserved for the workload execution from 2 to 7 Spark executors and
notice that the performance follows a near-linear speedup. As we can see in Figure 57, the
three queries Q1, Q2 and Q3 do not display much variance in their behaviour between them,
which is expected, since the algorithmic steps followed to reach the final calculations are very
close as described in Section 6.2.

Number of Spark executors
2 3 4 5 6 7

Tim
e[m

in]

0
2
4
6
8
10
12
14
16

Migration Pilot analytics performance

Q1 (execution time in minutes) Q2 (execution time in minutes)Q3 (execution time in minutes)
Figure 57. Migration Pilot Analytics performance on Spark using varying numbers of executors.

7.3 Urban Air Pollution Pilot
We benchmark the performance of the analytics methods described in Section 6.3 and report
our findings in the present section. We conduct two separate sets of experiments, the first
one on the SVD method and the second one on the Air Quality analysis methods. We focus on
the scalability of the methods and examine their behaviour when assigned resources of
various sizes.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 117 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

7.3.1 Snapshot Matrix SVD tests
The original data-set, we experiment with, consists of 361 snapshots. We conduct
experiments varying the data-set size and the number of used spark executors to benchmark
the application in terms of scalability. Our first experiment displays the impact of the input
size. Using the same number of resources, we execute the workload on the whole dataset,
then using half of it, and finally only a quarter of the snapshots. We notice that the execution
time does indeed scale almost linearly.

Number of Spark executors
361 181 91

Tim
e[m

in]

05
1015
2025
3035
40

SVD: input size impact on execution time

execution time (mins)
Figure 58. SVD performance using varying the input data sizes.

Next, we document the execution time of our application that calculates the SVD using the
full data-set with varying numbers of spark executors allocated. We notice that the scaling is
not quite linear. This happens due to some of the linear algebra operations involved, the
parallelization of which cannot exploit the whole of the cluster resources.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 118 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Number of Spark executors
1 2 3 4 5 6 7

Tim
e[m

in]

0
5
10
15
20
25
30

SVD: number of spark executors impact on execution time

time (mins)
Figure 59. SVD performance using varying numbers of spark executors.

7.3.2 Air Quality Indices tests
The data-set we experiment with consists of 361 snapshots – each marked with a timestamp.
They contain simulation information at a 10-minute interval in an urban environment in
Bologna. The total size of the dataset measures up to 3.6GB.
To benchmark our methods, we use the 3 distinct queries we introduced in section 6.3.2.4.

 Query 1: Calculate possible threshold violations for a specified pollutant concentration
(or wind velocity) over 1-hour windows (a limited number of violations are acceptable)
in a specified time range. Report whether the limit of acceptable violations has been
surpassed or not.

 Query 2: Calculate possible threshold violations for a specified pollutant concentration
(or wind velocity) over 1-hour windows (a limited number of violations are acceptable)
in a specified time range. Report whether the limit of acceptable violations has been
surpassed or not.

 Query 3: Calculate a specified pollutant’s concentration or wind velocity over 1-hour
windows in the frame of a day (no thresholds are applied).

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 119 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Number of Spark executors
2 3 4 5 6 7

Tim
e[m

in]

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Air Quality Pilot analytics performance

Q1 (execution time in minutes) Q2 (execution time in minutes)Q3 (execution time in minutes)
Figure 60. Air Quality Analytics performance with varying numbers of Spark executors.

We execute the queries multiple times using the same point in the urban environment as
reference and the same radius (10m) to ensure fairness, and report themean execution times
in Figure 60. We can observe that the different queries cause minimal fluctuation in the
performance, as they follow a similar execution pattern, with minor changes due to the
aggregations that take place when there are time frames and windowing involved – which
adds an extra execution layer. We additionally notice that the performance indeed improves
with more resources, as we gain a speed-up of a few seconds in each case.
Next, to assess the impact selectivity (i.e., the number of mesh points which are within radius
distance with regards to the specified point of interest) has on the processing time, we change
the selected point and radius combination. Selectivity can be affected by the mesh geometry
(some parts can be denser that others), or radius selection (a large radius would result in more
points selected). We use Query 2 from the experiment above and fix the configuration to 5
executors (the baseline for this experiment is an execution time of just 129 seconds, as
depicted in Figure 60). We then modify our selected point of interest and radius to increase
selectivity by x10, x100, and x1000 in comparison to the reference and report the impact in
execution times (Table 31). We can see that the query selectivity barely impacts performance,
as the filters applied due to the temporal and special constraints set by the user already limit
the size of the working data set significantly.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 120 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Query
Selectivity

Execution time (secs)

x1 129
x10 134
x100 169
x1000 190

Table 31. Impact of selectivity on Query Execution.
7.4 Social Networks Pilot
7.4.1 Social Network analyser tests
The Twitter analyser is used to derive statistics from real-world Twitter data. It has been
described in more details in Section 6.3.
There are two purposes of this benchmark: one is to determine the ability of Twitter analyser
to scale with hardware and the other is to find the impact of graph size on execution time. To
this end, the analyser has been executed on various number of nodes, each featuring 8 cores.
Three dataset graphs of differing size in total were tested. They are presented in Table 32. In
order to keep runs between different graphs comparable, the list of tweets for each dataset
has a constant length of 1274 and features similar complexity level.

Dataset Nodes Edges
FPOE 21291 2527541
VEGAN 11015 381627
NEOS 8277 799792

Table 32. Characteristics of selected dataset graphs.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 121 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

7.4.2 Results and findings
The benchmarking results of performance and scaling speedup are presented in Figure 61 and
Figure 62.

Nodes
1 2 4 8 16

Tim
e[s

]

7000

9000

11000

13000

15000

17000

19000

21000
Social networks analyser performance

FPOE NEOS VEGAN
Figure 61. Performance of social networks analyser on selected datasets.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 122 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Nodes
1 2 4 8 16

Spe
edu

p

0.970.980.991
1.011.021.031.041.051.061.07

Analyser speedup

NEOS VEGAN FPOE
Figure 62. Performance speedup of social networks analyser on selected datasets.

The results show a significant time increase for bigger datasets, suggesting calculating
distances in large graphs is much more demanding than smaller ones.
Apart from this, a minor performance improvement is observed with increased number of
nodes dedicated to the task. The effect is most pronounced with bigger datasets. It is because
the graph searching, which is the most time-consuming part of processing needs to be
executed sequentially for each tweet with frequent synchronisation barriers, which limits the
effects of scalability of the whole application. This is necessary, as the computations depend
on data from multiple datasets and therefore cannot be parallelized any further. Both pre-
and postprocessing are impacted by scaling hardware resources as they fully utilize Spark
transformations.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 123 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

8 GPGPU benchmarking and optimization
An emergent way to deal with complex tasks is using machine learning algorithms run on
dedicated hardware accelerators. In this section we present the results of the work done in
these areas. It is split into benchmarking of GPGPUs using neural models and data distribution
strategies for training optimization. The focus of these tests is on scaling in multiple-GPU
environment.
The purpose of the experiments has been to provide an overview of available techniques and
determine their ability to scale and perform.
8.1 Infrastructure description
GPGPU tests have been conducted on several infrastructures: Vulcan, Altair and AMD cloud.
Each of them provides nodes with multiple GPUs.
Both Vulcan and Altair are equipped with Nvidia Tesla V100 accelerators with SXM2 interface.
Where they differ is in CPUs (Intel Xeon 8268 vs Intel Xeon 6240) and job scheduling system
(PBS Torque vs SLURM). On AMD cloud there are nodes with two different GPUmodels – AMD
MI50 and AMD MI100 but they all use the same CPU - AMD EPYC 7742.The software stack
consists of essential GPU tooling and environment: CUDA for Nvidia and ROCm for AMD, as
well as PyTorch 1.7.0 with profiling libraries for machine learning.
More details about graphical accelerators can be found in section 3.2.2 of deliverable 5.5.
8.2 Benchmarking of GPGPU cards
This work measured performance of available GPGPU architectures in a variety of machine
learning tasks. They were compared by running training of image classification algorithms
differing in complexity.
8.2.1 Goal and methodology
The goal of these tests is to compare the performance of various GPGPU architectures when
running diversely demanding machine learning tasks. Additionally, impact of hardware scaling
(1 up to 8 GPUs) and other infrastructure elements have also been investigated.
Each neural model has been run with the same setup:

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 124 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

 Input images have dimensions of 224x224x3, are made of randomized, double-
precision data,

 Batch size is 48,
 First, 5 warmup forward and backward propagation rounds are performed, then

results of 50 rounds of training are averaged to get the final result.
8.2.2 Scalability tests of machine learning models
Tests have been performed with 3 readily available neural models used for image
classification: ResNext101_32x8d, VGG19 and Mobilenet_v2. They differ in scale and
complexity, therefore necessitating a varying amount of GPU processing power.
8.2.2.1 Model comparison
The details of all three models are presented in Table 33.

Model Layers FLOPs Number of parameters
ResNext101_32x8d 101 16B 88M
VGG19 19 19.6B 144M
Mobilenet_v2 53 300 M 3.47 M

Table 33. Details of tested machine learning models.

The first series of charts present the training time for steady, 48 batch size training of a
particular neural model on specified number of GPUs.
The second series of charts present relative increase in speed when scaling the training job
for multiple GPUs.
8.2.2.2 ResNext101_32x8d
ResNext is machine learning architecture that is 101 layers deep. It is a homogeneous neural
network, which reduces the number of hyperparameters required by conventional ResNext.
This is achieved by their use of "cardinality", an additional dimension on top of the width and
depth of ResNext. Cardinality defines the size of the set of transformations. It has 88 million

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 125 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

parameters and a single forward pass requires 16 billion FLOPs. This model has been described
in [44].

1 GPU 2 GPU 4 GPU 8 GPU

Tim
e[m

s]

0
2000
4000
6000
8000
10000
12000
14000

ResNext101 scaling performance

Nvidia V100 (Vulcan) Nvidia V100 (Altair)AMD MI50 AMDMI100
Figure 63. Training performance for ResNext neural model on selected architectures.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 126 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Number of GPUs1 2 4 8

Spe
edu

p%

0
100
200
300
400
500
600
700

ResNext101 incremental relative speedup

Nvidia V100 (Vulcan) Nvidia V100 (Altair) AMD MI50 AMDMI100
Figure 64. Training performance speedup for ResNext neural model on selected architectures.

ResNext tests display a linear speedup (Figure 64). Nvidia cards offer better performance in
this scenario, but AMD offerings scale better (Figure 63).
8.2.2.3 VGG19
Used in large-scale image recognition setting, VGG19 is a variant of VGG model which in
consists of only 19 layers (16 convolution layers, 3 fully connected layers). VGG19 uses 19.6
billion FLOPs per forward pass. The number of parameters is 144 million making it a big and
complicated neural model. This model has been described in [45].

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 127 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

1 GPU 2 GPU 4 GPU 8 GPU

Tim
e[m

s]

0
1000
2000
3000
4000
5000
6000
7000

VGG19 scaling performance

Nvidia V100 (Vulcan) Nvidia V100 (Altair)
AMD MI50 AMDMI100

Figure 65. Training performance for VGG19 neural model on selected architectures.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 128 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Number of GPUs1 2 4 8

Spe
edu

p

0
1
2
3
4
5
6
7
8
9

VGG19 speedup

Nvidia V100 (Vulcan) Nvidia V100 (Altair) AMD MI50 AMDMI100
Figure 66. Training performance speedup for VGG19 neural model on selected architectures.

VGGmodel also scales linearly (Figure 65). This time it is AMD cards that perform better, while
Nvidia GPUs scale better (Figure 66).
8.2.2.4 Mobilenet_v2
MobileNet-v2 is a convolutional neural network that is 53 layers deep.
The MobileNet v2 architecture is based on an inverted residual structure where the input and
output of the residual block are thin bottleneck layers opposite to traditional residual models
which use expanded representations in the input. MobileNet v2 uses lightweight depthwise
convolutions to filter features in the intermediate expansion layer. Additionally, non-
linearities in the narrow layers were removed in order to maintain representational power.
This model has been described in [45].

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 129 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

1 GPU 2 GPU 4 GPU 8 GPU

Tim
e[m

s]

0
100
200
300
400
500
600
700
800

Mobilenet_v2 scaling performance

Nvidia V100 (Vulcan) Nvidia V100 (Altair)AMD MI50 AMDMI100
Figure 67. Training performance for Mobilenet neural model on selected architectures.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 130 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Number of GPUs1 2 4 8

Spe
edu

p

0
0.5
1

1.5
2

2.5
3

3.5
4

Mobilenet_v2 speedup

Nvidia V100 (Vulcan) Nvidia V100 (Altair) AMD MI50 AMDMI100
Figure 68. Training performance speedup for Mobilenet neural model on selected architectures.

Mobilenet, being the least complicated model, presents a different dynamic. Up to a point a
linear speedup can be observed, but further scaling slows down the speedup. Again Nvidia
GPUs achieve better times and this effect is more pronounced there.
8.2.3 Results and findings
The results show that model complexity correlates with the effect of GPU scaling, meaning
that more complicated models gain more speedup from additional hardware than simpler
ones.
What was also observed is that adding more GPUs comes with high data distribution penalty,
which is only offset, when task is sufficiently large. Again, smaller models might be adversely
affected by adding more processing units than is necessary.
Moreover, GPUs from the same manufacturer appear to follow the same trends when it
comes to performance and scaling. It should be noted however, that even though GPUs are
the same in case of Vulcan and Altair, other factors of the infrastructure (CPU, memory, hard
drive) impact the results, explaining the differences in performance.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 131 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

8.3 GPU ML model training optimization
Here we present an overview of ways to increase neural model training performance when
scaling out hardware. A variety of data distribution strategies were examined to show their
implementation differences and efficiency.
8.3.1 Goal
The aim of this analysis is to determine the best possible utilization of GPU resources in large
machine learning training tasks. To that end, several methods of distributing training job
among multiple GPUs were analysed and compared.
8.3.2 Scenario description
There exist a number of training approaches varying in complexity and efficiency. They all use
the same image classification model - ResNext101, but they differ in the way they distribute
data among GPUs.
The setup for each test is similar to GPGPU benchmark:

 Input images have dimensions of 224x224x3, are made of randomized, double-
precision data

 Batch size is 48
 55 steps of both forward and backward propagation are performed

All data is being randomly generated and its size remains constant to ensure all cases are
comparable.
8.3.2.1 No parallelism (single GPU)
In this simplest case training is being done using only one GPU on a single node. No additional
measures are implemented to parallelize the execution of the code.
8.3.2.2 Data parallelism
This approach uses PyTorch’s DataParallel [46] mechanism. It is a single-process multi-thread
parallelism that allows executing the same model on multiple GPUs simultaneously. Because
implementing it does not require additional code to set up process groups it is easy to use
even for existing non-parallel projects.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 132 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

There are however some drawbacks. DataParallel cannot scale beyond one machine. It
is also slower than distributed approaches even in a single machine with multiple GPUs due
to global interpreter lock contention across multiple threads, the extra overhead introduced
by scatter and gather operations and per-iteration model replication.
8.3.2.3 Distributed Data Parallelism (DDP)
This more advanced mechanism introduces multi-process parallelism, in which each GPU
performs computations on its own dedicated process. Because of it, it requires process
spawning and communications to be already set up, which often requires an extensive code
rewrite. On the other hand, it works for both single- andmulti-node training, making it suitable
for particularly large tasks in supercomputing infrastructures.
It is important to point out that on its own, DDP comes with no workload distribution - each
GPU is processing the entire dataset it is provided with. In order to address this issue we have
tested 3 approaches.
8.3.2.3.1 DDP with no workload distribution
In this case all data sent to GPU is being processed. It is not being divided it into smaller chunks
nor are there any other restrictions on processing applied. Since we are sending entire dataset
to 8 accelerators, GPUs perform effectively 8 times the work.
8.3.2.3.2 DDP with Round-robin workload distribution
This approach introduces a check inside parallelized process function that tests whether a
part of dataset is assigned to a particular GPU. All data is still being sent to all GPUs, but in this
case only a chunk of it is being processed by each of accelerators.
8.3.2.3.3 DDP with Distributed Sampler
Here we introduce Distributed Data Sampler mechanism, which manages dividing the dataset
into samples and parallelized workload distribution. This requires moving Data Loader logic
into parallelized process function. However, thanks to it, only needed chunks of data are being
sent to GPUs.
8.3.3 Tests
Tests were conducted on a GPU equipped nodes on Vulcan cluster at HLRS. More details have
been described in section 3.2.2 of deliverable 5.5.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 133 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

All training runs were performed on ResNext101_32x8d neural model (for more details see
section 8.3.2). Also, unless specified otherwise, tests were run with 8 GPUs on a single node.
In each case two distinct stages can be observed: preparation phase and computation phase.
Preparation phase consists mainly of lengthy data transfers to GPU and during computation
phase the actual forward and backward passes of neural model take place. These phases have
been marked on figures.
8.3.3.1 No parallelism (single GPU)
Training with no parallelism produced the following results:
 Total duration - 154s
 Preparation phase - 10s

Figure 69. Training run without parallelism seen on GPU profiler tool.

In the simplest, sequential scenario a majority of the time is spent on computation tasks.
Preparation phase comprises only a small fraction (around 10s) of total runtime duration
(154s).
8.3.3.2 Data parallelism
Training with data parallelism generated the following times:
 Total duration - 105s
 Preparation phase - 46s

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 134 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 70. Training run with data parallelism seen on GPU profiler tool.

With data parallelism a significant speedup in total execution time can be observed. However,
preparation phase is now comparatively longer, making up 46s out of total 105s run time. This
is a result of lengthy memory transfer operations to GPUs being sequential, which can be
explained because of Python’s Global Interpreter Lock limitation.
8.3.3.3 Distributed data parallelism with no workload distribution
Training with distributed data parallelism without workload distribution produced the
following results:
 Total duration - 178s
 Preparation phase - 28s

Figure 71. Training run with distributed data parallelism seen on GPU profiler tool.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 135 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

With DDP a major reduction in preparation phase occurs (28s from 46s), as now all the data
transfers to GPUs happen simultaneously. On the other hand, overall execution time is
extended (178s). This is explained by no workload distribution - each GPU is effectively
performing 8 times the work by processing all the dataset instead of its chunks.
8.3.3.4 Distributed data parallelism with Round-robin workload distribution
Training with distributed data parallelism with round-robin data distribution resulted in the
following times:
 Preparation phase - 29s
 Total execution time - 57s

Figure 72. Training run with DDP and round-robin workload distribution seen on GPU profiler tool.

In this scenario, all data is still being sent to all GPUs, but not all of it is being processed. As a
result, there is a significant speedup of execution time. Nonetheless, extraneous data is still
being transferred.
8.3.3.5 Distributed data parallelism with DistributedSampler mechanism
Training with distributed data parallelismwith DistributedSampler returnedwith the following
results:
 Preparation phase - 21s
 Total execution time - 47s

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 136 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 73. Training run with DDP and distributed sampler seen on GPU profiler tool.

In a final approach unnecessary data is no longer sent to all the GPUs. Owning to that,
preparation phase can be further reduced (21s). This approach provides best performance for
training neural models out of all strategies tested.
8.3.4 Analysis
The combined results for all the scenarios are shown in Figure 74.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 137 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

No p
aralle

lism

Data
paral

lelism

DDP
with

no w
orklo

ad di
stribu

tion

DDP
with

roun
d-rob

in wo
rkloa

d dis
tribu

tion

DDP
with

Distr
ibute

dSam
pler m

echa
nism

Tim
e[s

]

0
20
40
60
80
100
120
140
160
180
200 Training strategy performance

Preparation Total
Figure 74. Performance of different training strategies.

The analysis of the results allows us to draw several conclusions. Easy to implement Data
Parallelism already offers a sizeable run time reduction of model training (32%). In contrast,
more advanced approaches offer even better results (70% run time reduction) at the cost of
more complicated implementation.
Finally, distributing data to multiple GPUs requires some overhead, but it is overcome for
larger jobs by gains in computing performance (16% run time increase for 800%work increase
in case of DDP).

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 138 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

9 Data management
Data Management System (DMS) is an indispensable part of the workflow for Global
Challenges (GC) systems. In the chapter we analyse influence of other protocols on CKAN [47]
data transfer performance.

Data repository folder:
https://gitlab.com/eu_hidalgo/benchmarking/-/tree/master/deliverable_3_5/
data_management

9.1 CKAN enhancement
The purpose of CKAN is to register datasets, to facilitate the search of datasets, and finally to
provide access to these datasets. Besides providing these core functionalities related with
data storing, CKAN also allows grouping of datasets, creating organizations, metadata
management, and relationship management of data, it can handle different data formats, can
harvest external data sources and provides a shared pool of data where all can benefit from
the publicly available collection of data of other users which covers most if not all of the pilots’
requirements. CKAN is integrated with the HiDALGO SSO Keycloak instance.
We have noticed that the processes of data uploading with the CKAN API takes a long time
and needs more server resources (CPU, RAM, CACHE on disk) than to transfer the data with
file transfer protocols like FTP, SCP. It is especially visible for single files larger than 2GB.
We have installed and configured the GridFTP server on the CKAN instance. We have also
configured a web-server to serve the data and created dedicated scripts to upload data to the
CKAN.
The data is uploaded to the GridFTP server with unique file name. The data is saved in the
dedicated “ckan” directory in the users’ home dirs. After the transfer is completed, the scripts
create a new resource in the given dataset in the CKAN.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 139 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 75. The resource file100M.bin uploaded by GridFTP.

To download the data just click on the URL or use ckan-client, wget, curl etc. If the data is
located in the user’s home directory, GridFTP or SCP client can be used as well.
Uploading data via GridFTP and SCP protocols requires additional authorization, which can be
done as described in chapter 9.2.

9.2 Benchmarks
The purpose of the tests is to check the efficiency of the data management system by sending
files of various sizes with a total size of 100GB from three different locations: PSNC, PCz
(Czestochowa University of Technology) and HLRS. Performance tests were performed
sequentially and in parallel mode. In order to determine the efficiency of the proposed
solution, the following procedure has been proposed:

1. make a traceroute to the CKAN/GridFTP server,
2. test the upload and download speed with the iperf3 tool,
3. upload 100GB of 100MB, 1GB, 2GB, 5GB and 10GB files (repeat 10 times for each files)

using GridFTP, SCP and CKAN API (curl tool),
4. upload data in sequential and parallel mode (from 3 locations for each protocol).

Software CKAN [PSNC] Client [PSNC] Client [PCz] Client [HLRS]
OS Ubuntu 20.04.3

LTS
Ubuntu 18.04.6
LTS

Debian 10 Ubuntu 18.04.6
LTS

vCPU 8 8 2 2
RAM 16GB 16GB 2GB 7GB
Disk 300GB and 2TB 40GB and 1TB 32GB 30GB

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 140 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

CURL 7.68.0 7.58.0 7.64.0 7.58.0
G l obu s -G r i d F TP
toolkit

6.21 6.21 6.21 6.21

SSH/SCP OpenSSH_8.2p1 OpenSSH_7.6p1 OpenSSH_7.4p1 OpenSSH_7.6p1
CKAN 2.9.4 / Python

3.8
N/A N/A N/A

PostgreSQL 12.8 N/A N/A N/A
Table 34. Software stack for CKAN benchmark.

The table below presents the route of packets from PSNC to the CKAN virtual machine located
in PSNC:

HOST PSNC Loss% Snt Last Avg Best Wrst StDev
1. 62.3.171.150 0.0% 4 0.7 0.8 0.5 1.1 0.2

Table 35. Route from PSNC to the CKAN.
The table below presents the route of packets from PCz to the CKAN virtual machine located
in PSNC.

HOST PCz Loss% Snt Last Avg Best Wrst StDev
1. 212.87.229.129 0.0% 4 19.4 10.1 0.3 20.2 11.2
2. 10.2.12.1 0.0% 4 0.3 0.3 0.2 0.6 0.2
3. 150.254.255.177 0.0% 4 6.4 6.4 6.3 6.4 0.0
4. 150.254.255.76 0.0% 4 6.4 6.4 6.4 6.4 0.0
5. 150.254.166.89 0.0% 4 6.7 36.0 6.5 124.3 58.9
6. 10.0.20.3 0.0% 4 7.0 43.2 7.0 151.7 72.3
7. 62.3.171.150 0.0% 4 8.1 8.1 7.9 8.2 0.1

Table 36. Route from PCz to the CKAN

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 141 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

The table below presents the route of packets from HLRS to the CKAN virtual machine located
in PSNC.

HOST HLRS Loss% Snt Last Avg Best Wrst StDev
1. 141.58.0.254 0.0% 4 0.5 0.6 0.5 0.7 0.1
2. 141.58.252.110 0.0% 4 1.1 0.9 0.7 1.1 0.2
3. 141.58.252.2 0.0% 4 0.7 0.8 0.7 1.0 0.1
4. 193.197.63.12 0.0% 4 2.3 2.2 2.1 2.4 0.1
5. 129.143.60.76 0.0% 4 2.9 3.1 2.9 3.3 0.2
6. 129.143.60.113 0.0% 4 6.3 6.5 6.3 6.7 0.2
7. 62.69.146.103 0.0% 4 5.9 6.3 5.9 6.7 0.3
8. 109.105.98.124 0.0% 4 19.6 16.0 14.7 19.6 2.4
9. 109.105.98.125 0.0% 4 23.3 23.2 23.0 23.3 0.2
10. 212.191.224.18 0.0% 4 26.4 25.4 25.0 26.4 0.7
11. 150.254.255.76 0.0% 4 25.0 25.0 25.0 25.2 0.1
12. 150.254.166.89 0.0% 4 25.1 25.2 25.1 25.4 0.2
13. ??? 100% 4 0.0 0.0 0.0 0.0 0.0
14. 62.3.171.150 0.0% 4 26.7 26.8 26.7 26.9 0.1

Table 37. Route from HLRS to the CKAN.

The route from HLRS is the longest one, while in PSNC the CKAN and the client are in the same
data centre.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 142 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 76. Europe map with location of data centres taking a part in testing procedure: Poznań (PSNC),Częstochowa (PCz) and Stuttgart (HLRS).

In order to determine connection bandwidth iperf3 tests were determined for upload and
download transfer. Achieved results are:

 PSNC <-> PSNC: AVG 621 Mbits/sec
 PSNC <-> PCz: AVG 148 Mbits/sec
 PSNC <-> HLRS: AVG 72.9 Mbits/sec

As expected, both the transmission speed and the latency were the best for PSNC local
transfer. By default, files with a size of 10MB can be uploaded via the CKAN API. For the
purposes of the HiDALGO project, we have introduced modifications to the CKAN and Nginx
configuration to improve servers performance. As a consequence of set of tests we increased
the following buffers: post-buffering, ckan.max_resource_size,

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 143 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

client_max_body_size and timeout limits: proxy_connect_timeout,proxy_send_timeout, proxy_read_timeout. We have also set the enable-threads
option in CKAN to true and increased our storage capacity for cache and storage.
After iperf3 and traceroute benchmarks, we have performed a sequential tests of upload data
with GridFTP, SCP and CURL / CKAN API. We have uploaded 100GB of files 100MB, 1GB, 2GB,
5GB and 10GB.

Figure 77. Upload time from PSNC to PSNC.

The results for GridFTP and SCP for files 1GB and larger are very close. For files of size 10GB,
SCP is slightly faster than GridFTP. The results for CURL / CKAN API are 3 times slower
compared to GridFTP and SCP.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 144 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 78. Upload time from PCz to PSNC.

The results for GridFTP and SCP are close. The CURL / CKAN API is significantly slower than
with PSNC. The worst results are obtained for the CKAN API method and a large number of
small files or large files (larger than 5GB).

Figure 79. Upload time from HLRS to PSNC.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 145 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

The results for GridFTP, SCP and CURL / CKAN API are close for files 1GB and 2GB. The CURL /
CKAN API method is significantly slower than with PCz.
For all locations the GridFTP is the fastest method. The slowest method is CURL / CKAN API,
because of caching data in the web server. The best results are obtained with 1 - 10 GB files,
using the GridFTP and SCP protocols. In the case of 100MB files, there is a large overhead on
communication with the CKAN API and creating data stores. We noticed that CKAN slows
down with the number of objects in datasets.

Figure 80. CKAN datastore creation time.

For the first 1000 elements in the dataset the creation datastore time is about 1 – 11 s. For
the next elements, this time increases linearly.
After performing the sequential tests, we selected the top 3 results to compare themwith the
parallel mode transfer. We collected times for sequential and parallel data transfer, a total of
300 GB (100 GB for each of the 3 locations).

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 146 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 81. The results of sequential and in parallel upload data using GridFTP.

For the GridFTP the parallel method is faster for files 2 GB and 5 GB. The transfer time is
faster than SCP method. As the file size increases, the transfer time decreases faster than for
SCP.

Figure 82. The results of sequential and in parallel upload data using SCP.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 147 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

For the SCP the parallel method is faster than sequential for all files. The transfer with SCP
protocol is very stable and reproducible. In the most Linux systems We don’t need to install
additional software like GridFTP client.

Figure 83. The results of sequential and in parallel upload data using CKAN API.

For the CKAN API the parallel method is faster than sequential for files 1GB and 2GB. Unlike
SCP and GridFTP methods, the transfer time using the CKAN API increases with the size of
the transferred file.
Generally, the best method for uploading large amounts of data is the GridFTP and SCP
protocol. All methods can be successfully used for small amounts of data (up to 10GB). In the
case of CKAN API, the data is additionally cached by Nginx proxy and Supervisor. As the data
size increases, the performance of this solution decreases.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 148 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

10Data security
The HiDALGO user accounts are defined at Keycloak IDM [48]. Using SSO (single sign on)
mechanism there is the possibility to log in to the CKAN portal [49] and other services that
support the SSO.
In HiDALGO, the orchestrator is tasked to deploy jobs on HPC or VMs. It requires either SSH
login (user/password combinations) or credentials like API tokens.
The used orchestrator is Croupier, a Cloudify plugin. Since Cloudify doesn't offer multi-tenancy
in their community version, any user that logs in must do it with the admin account, which
can see everything in Cloudify, including deployment inputs, Cloudify secrets, etc. A method
of hiding users' secrets from other users, and ideally from administrators as well is required.
Another requirement is that the method used must not require anything be installed or
configured on the remote machines or services that are protected by these credentials, since
a general method needs to be developed and most infrastructures don't allow a modification
to their authentication methods. Therefore, any solution must allow the orchestrator to use
the infrastructures with the normal access methods (private-key, password, API token, etc.).

10.1 Vault Integration
A solution is proposed to manage user's credentials using Hashicorp's Vault [50] as the main
method to store them. Every functionality in Vault is defined by a URL: any service, any secret
engine, has a URL through which it is accessed. For example, policy management is accessed
through /sys/policies, therefore if a user wants to create a policy named ssh-username, they
would send a POST request to http://<vault_address>/v1/sys/policy/ssh-username.
Secrets are also identified by their URLs, for example, a secret stored in the /ssh secret engine
might be located at /ssh/john/hawk.hlrs.de. To access said secret a user would have to direct
a GET request to http://<vault_address>/v1/ssh/john/hawk.hlrs.de.
In order to control who can access which URL, Vault uses policies and tokens. Every call made
to Vault's API must contain an access token in its header. Every token has a number of policies
attached to it. The policies attached to a token determine which URLs the token can access.

The Vault instance in HiDALGO has been configured to allow authentication via jwt, by making
use of Keycloak. When user wants to interact with Vault, they need to send their active JWT

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 149 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

(received from Keycloak when they log-in) and Vault will return a token with the policies
defined in the user’s role in Vault. The user’s role in Vault is just a configuration that maps
information on the JWT to the policies that need to be granted to the generated Vault token.
Therefore, to allow users authenticated through Keycloak to access private access to their
secrets in Vault permanently, a system needs to be setup so that a new role and a new policy
is generated for each secret that gets uploaded to Vault, to allow access to that secret to the
user that uploaded it. For the Horizon2020 project SODALITE a component was developed
that does just that, it is called vault-secret-uploader and is a Flask API that allows user to
upload secrets to Vault, creating the necessary policies and roles so that the user can access
them when they authenticated using the JWT method.
Vault provides another method so that certain secrets are only accessible by one user, called
cubbyhole. Every Vault token has their own cubbyhole secret engine such that every secret
uploaded there using a token can only be accessed by that same token. This cannot be used
in conjunction with JWT authentication since every time a user is authenticated into Vault
using JWT a new Vault token is generated and therefore the cubbyhole is reset. However, the
cubbyhole method can be used in HiDALGO for temporary secret storage.
There are 3 different ways Hidalgo allows users to manage their HPC credentials, each with
its own benefits and disadvantages. These 3 methods are listed as follows, from least secure
to most secure (and from most convenient to least convenient):

 Permanent storage of the users main credentials - using this method, a user's
credentials are stored permanently on Vault. Therefore, they would only need to
upload their credentials once to HiDALGO's platform and they can be used by the
orchestrator until the user decides to delete them. The users would upload their
credentials through the portal, which would use vault-secret-uploader to register the
user in vault (create role/policy) and upload the credentials to Vault. Once the users
have their credentials safely stored in Vault, they are used in Croupier in the following
way.

 Permanent storage of a user's secondary credentials - This method is very similar to
the first one, it can only be used to manage SSH credentials (HPC or VM credentials,
for example). The main difference with this method is that the user doesn't provide
the Portal with their full HPC or VM credentials, they only give the Portal the username
and host of each HPC or VM they need to save the credentials for. The Portal generates
a new key pair, it saves the private key in Vault using the same method as described
previously (through the vault-secret-uploader). It then gives the user the public key.
The user must then connect to the HPC or VM by themselves to upload this public key

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 150 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

to allow croupier to connect to the HPC in the name of the user. The main benefit of
this method is that if Vault or HiDALGO is ever compromised, the user can simply
remove the public key from the HPC and doesn’t need to get in contact with the HPC
to change their primary keypair. It also allows users that have hardware methods of
authentication or other methods that cannot be easily uploaded to Vault to use the
HiDALGO platform. The drawback is that the user must do some configuration actions
outside the control of the portal, so it is reserved for experienced users.

 Temporary storage of the user's credentials - In this method the vault-secret-uploader
is not used. Every time the user wants to run an application, they have to provide their
credentials in the portal. The portal generates a Vault token with access to only that
token's cubbyhole and stores the credentials in that cubbyhole. The portal then runs
the application, passing to Cloudify the token where the secrets are stored. Croupier
downloads the credentials for all the infrastructures it needs to connect to before the
token expires and the secrets are deleted. This is the most secure option of all, since
the secrets are only stored on the HiDALGO platform for a maximum of 10 minutes.
The drawback is that the user needs to upload their main credentials every time. It
also cannot be used by users who have hardware private keys. Even if a system could
be made that combined this method and the previous one, where a private key
generated by the portal is saved on a cubbyhole, we can't rely on the user to upload
their public keys to the HPCs in time before the token expires.

In our opinion the “permanent storage of a user's secondary credentials”method is an optimal
solution for HiDALGO users and HPC / VM environments. All the operations related with the
portal and Cloudify will use the secondary credentials (user will not know the private key).
The public key will only be transferred to the HPC / VM environment once. Users will also be
able to use their primary credentials to log into HPC / VM environments for development and
testing. To use the portal, users will always have to log in using HiDALGO IDM. However, since
all 3 methods have their use cases, all 3 will be implemented in the Portal.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 151 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 84. A sequence diagram of a user's secondary credentials in the Vault.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 152 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

11Visualization
The chapter describes most recent achievements in the implementation of HiDALGO
visualization tools (COVISE and Visualiser) extensions. As part of the completed tasks, a
number of additional visualization extensions were prepared, from presenting specific
properties to AI solutions. Moreover, the set of performance tests were conducted to assess
the benchmarking results.

Data repository folder:
https://gitlab.com/eu_hidalgo/benchmarking/-/tree/master/deliverable_3_5/visualization

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 153 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

1
2
3
4
5
6
7
8
9
11.1 COVISE
11.1.1 Extension implementation
Several extensions were implemented to improve COVISE for the visualization of Urban Air
Pollution simulation results. Besides the provision of a web-accessible visualization, also a
more extensive model for presentations in the CAVE was developed. This enables the
combination of the simulation data with further data sets, such as geographic imagery and
building models. The model was implemented using Vistle, the highly parallel successor of
COVISE. By its extended parallelism, Vistle also enables the processing of larger data sets than
COVISE. The resulting visualization can be best explored in a CAVE.
The visualization is aimed at simulation results obtained fromOpenFOAM. Results are typically
stored in either native OpenFOAM format or converted into Ensight format. Thus, the import
of files in these formats had to be implemented. This was realized as COVISE/Vistle processing
modules (“ReadEnsight” and “ReadFoam”). As the handling of COVISE and Vistle is similar,
only one tool, COVISE, will be described in the following. However, it is also applicable to
Vistle.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 154 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

COVISE already provides plenty of processing modules to extract inter alia iso surfaces, cutting
surfaces or streamlines from a data set. The module pipeline in Figure 85 shows an example
of a workflow of processing modules in COVISE. Further modules were added to provide
additional functionalities, such as the computation of cutting surfaces parallel to a given
ground terrain.
As mentioned above, there is also the option to extract HTML files from COVISE which allows
an interactive model exploration that can be integrated on websites.

Figure 85. The module map in COVISE for visualizing UAP simulation data. Coloured boxes indicate: cuttingsurface (green), iso surface (yellow), streamlines (rose), vector field (blue).
11.1.2 Application & Results
The COVISE visualization workflow was applied to the data derived from the Urban Air
Pollution use case. The two application domains considered in the simulations were the city
centre of Stuttgart, Germany and the city of Győr, Hungary. The latter was prepared as a
stand-alone model using COVISE, while the former was combined with other data for the
region of Stuttgart using Vistle. However, both data sets can be handled with the respective
other tool as well.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 155 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 86. Screenshot of the interactive visualization. Iso surface for NOx are shown along with a city model(Stuttgart building scans).

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 156 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 87. The same model from a different perspective: LoD 2 building models and streamlines are added(Stuttgart).
Extractions from the Stuttgart model can be seen in Figure 86 and Figure 87. A coarser building
model is used for Figure 87 to show to location and approximate extends of the city’s
buildings. For Figure 86, more detailed building scans are used, presenting textured
geometries. Both figures include the visualization of NOx iso surfaces to present the simulation
predictions for NOx distribution. Moreover, Figure 87 also shows streamlines to illustrate the
wind speed and direction.
11.1.3 Benchmarking
Benchmarking of COVISE was conducted. Therefore, sample data sets of different size were
generated. The data sets were created using OpenFOAM to enable benchmarking on a sample
case comparable to the actual data as obtained from the UAP use case. The benchmarking
was performed on one node of the HLRS visualization cluster, a 64-bit system running Centos
8 equipped with Intel Xeon Gold 6134 CPU at 3.2GH and K6000 GPU. A COVISE workflow as
described above in Figure 88 was used containing processing modules to read the OpenFOAM
data set and compute iso surfaces, cutting surfaces and domain surfaces.

Execution time with different grid resolutions

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 157 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

The execution time of the COVISE workflow was compared for different mesh resolutions.
The data set sizes were between 4 thousand and 2.6 million grid vertices. COVISE was
executed on one rank of the HLRS visualization cluster. The results for the cold start task, i.e.
including the start-up of the application itself, are shown in Figure 88. It can be observed that
for smaller data sizes, the time is almost the same while it is increasing for more than ~150k
points. This is due to the overhead where most time is spent for smaller resolutions while
significantly more time is needed for the actual computations when the number of vertices is
increased.

number of vertices
1024 2048 4096 8192 1638

4
3276

8
6553

6
1310

72
2621

44
5242

88
1048

576
2097

152
4194

304

tim
ein

s

1
2
4
8
16
Execution time of COVISE for different grid sizes

Figure 88. Execution time of cold-start task for different mesh resolutions.

Execution time per module
Besides the overall execution time, the time spent in each module was measured. Two
different mesh resolutions were compared. As shown in Figure 89, in both cases, most time is
spent in the DomainSurface and IsoSurface module, although the time is significantly longer
for the larger data set. Further, the figure shows that for the smaller data set, the execution
time of the different modules is almost the same. In contrast, the deviations in time for the
larger data set are much stronger, confirming the impressions of the previous figure.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 158 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

module nameDomain surface Iso surface Cutting surface ReadEnsight

tim
e[m

s]

1

10

100

1000

10000

Execution time of COVISE modules for different number ofpoints

4k 623k
Figure 89. Processing time per module for different mesh resolutions.

11.1.4 Integration with the Portal
The COVISE tool has been integrated in the Portal in order to facilitate the access to
visualization (Figure 90). First of all, a new option was included under the ‘Visualization’
category for accessing information about COVISE. Since COVISE is a desktop application, the
new page includes information about how to install and use the COVISE tool.
Additionally, the backend of the Portal has included a new filter for instances, so it can identify
those instances with file formats which are compatible with COVISE
(like .vtk, .openfoam, .gmv and more). Thanks to this filter, the Portal can show a list of those
instances that could use COVISE, so the user can see the list and select one of those instances.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 159 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 90. Access to COVISE from the HiDALGO Portal.
If the output file is accessible (i.e. openly published in the CKAN), the user has the option to
download it, together with an example configuration file configuration for COVISE, so it will
be easier for the user to generate the needed visualization.

11.2 Visualizer
Visualizer is a web-based visualization tool for CSV data using coordinated multiple views [51].
It has been introduced and initially benchmarked in Deliverable 3.2, additional information
has been provided in Deliverable 3.3, and first dashboards for the use cases have been
described in Deliverable 3.4. Additionally, details on integrating Visualizer to other web-based
applications are provided in Deliverable 5.6 and 5.7.

11.2.1 AI method
Besides creating visualizations, Visualizer enables users to apply analytical workflows
depending on their analytical goals. So far, two analytical goals have been integrated in
Visualizer. These are "Gain Overview" and "Analyse Outliers".
For gaining an overview of the data, users need to specify the feature selection method, the
dimension reduction method, the pattern recognition method (so far, only clustering is

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 160 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

available), the machine learning algorithm for clustering and finally, the visualization for
displaying the results.
For outlier detection, users need to specify the outlier detection method, the dimension
reduction method and again, the visualization for displaying the results, see Figure 91.

Figure 91. AI-Wizard enabling users to select analytical goals and configure workflows

After configuration, the workflows are applied. Figure 92 shows the results for the clustering
and outlier detection method using a subset of the NEOS Twitter data set from the social
network use case. By selecting outliers in the right chart, corresponding elements are
highlighted in the left chart. The distance between data points in both charts show their
similarity, close data points indicate a higher similarity, whereas data points which are far
away from each other have a lower similarity.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 161 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 92. Results from a clustering (left chart) and outlier detection (right chart) method using the AI-Wizardin Visualizer for NEOS twitter data.

11.2.2 Optimization
The following features have been implemented in Visualizer to improve it in terms of
supported data sizes, code quality and UI features:

 Loading large data fileso Local files: The initial benchmarking revealed that loading large data files (CSV
file with more than 4.5 Mio rows and 12 columns, 516.7MB) was not possible
due to limitations of string sizes in JavaScript. In order to support reading larger
files, they are split up into chunks and merged later. Benchmarking results are
provided in the next section.o Remote files: The same limitations concerning string sizes have been identified
and fixed for loading remote files in Visualizer. Again, detailed results for
benchmarking are provided in the benchmarking section below.

 Outsourcing data aggregation methods to web workers: To improve the code quality
and optimize data processing, an API has been defined enabling us to outsource data
aggregation methods to web workers. This ensures that calculations are executed in
a background thread not blocking the main thread.

 Rule-based visualization recommender: The rule-based visualization recommender
implemented in Visualizer (enable/disable visualization depending on the selected

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 162 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

data fields) has been extended to support multiple occurrences and optional visual
channels at the same time.

 The coordination framework in Visualizer has been extended and improved by:o supporting multiple brushes within different visualizations, where brushes can
be AND or OR connected,o implementing an id-based coordination of visualizations for those
visualizations using the same data sets and keeping the value-based
coordination of visualizations for those with different data sets,o allowing users to specify for each visualization how incoming events from other
visualizations are handled (highlight data, filter data or ignore events from
other visualizations).

11.2.3 Benchmarking
For evaluating Visualizer, different methods are used. These include measuring the time for
loading data sets and dashboard on the one side, and the usability of Visualizer on the other
side.
First, the time required for loading local and remote data sets and dashboards has been
benchmarked for different data set sizes. Results are compared with initial benchmarking
performed in Deliverable 3.2.
For benchmarking, the following notebook configuration has been used:
Notebook: Lenovo ThinkPad T490S
CPU: 8 Intel ® Core ™ i7-8565U CPU @ 1,80 GHz 1.992 GHz
RAM: 16GB
System: 64 Bit operating system, x64-based processor
Operating System: Windows 10
Version: Windows 10 Pro
Browser: Chrome, version 96.0.4664.45

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 163 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 93. Average time in seconds for loading a CSV file in Visualizer depending on the number of data rows- blue: initial benchmarking for local files, red: new benchmarking for local files, yellow: new benchmarkingfor remote files.
Figure 93 shows the average time consumption in seconds for loading a data set in Visualizer
for different file sizes. The blue line shows the original benchmarks for local files, which was
limited to about 500MB file size. To support files larger than 500MB, files are split up into
chunks for reading, files smaller than 500MB are not split up to avoid a performance loss
during file reading. Therefore, it is called hybrid approach. The new, hybrid approach (red)
has slightly increased values for local datasets until 500MB and significantly higher values for
larger files due to splitting up the file content and reading in chunks. The reasons for higher
values for files less than 500MB size needs further investigation. The yellow line shows the
benchmarks for the new hybrid approach for remote file loading. It shows a similar pattern as
the benchmarks for local files, but higher values due to loading remote files.

Figure 94. Average time in seconds for loading a pre-configured dashboard in Visualizer depending on thenumber of data rows - blue: initial benchmarking for local files, red: new benchmarking for local files.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 164 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 94 shows the benchmarks for loading a dashboard in Visualizer. The blue line, again,
shows the results for the initial benchmarking while the red line shows the results for the
hybrid approach. Again, a similar pattern can be observed with increasing average durations.
Furthermore, memory consumption for loading local data sets has been investigated.
Benchmarking revealed varying results for memory consumptions. First investigations allow
assumptions that this happens due to Chrome’s garbage collector which cannot be influenced
from outside and cannot be disabled for benchmarking.
Furthermore, the usability of Visualizer has been evaluated in a user study. Evaluation
procedure:

 Participant information and consent form,
 Demographic and experience questionnaire,
 Visualizer introduction video and try out Visualizer,
 Tasks execution and feedback on task load,
 Post evaluation questionnaire.

The results allow to evaluate:
 whether Visualizer enables users to analyse their data,
 whether available interaction possibilities in Visualizer are intuitive and easy to use,
 which further visualizations and interaction possibilities are required to analyse data.

The user study was executed with eight participants, four of them female and four male. Most
of them are associated to the HiDALGO project. Most of them are researchers (5), one stated
to be a data scientist, one student and one support staff.
One participant uses data analysis tools at least once a month, others use them several times
a month or week (each three) and one participant every workday. For data analysis, seven
participants stated to use Python, five Excel, four MATLAB, three R and finally, KNIME,
RapidMiner, SAS andMAXQDA social science software are used by one. Theymainly use these
tools for getting an overview of the data (seven), identification of correlations (four), anomaly
detection and cause-effect analysis (both two) and trend analysis (one). Other than that, data
analysis tools are also used for simulations by one participant.
Considering the usage of visualization tools, one participant stated to never use visualization
tools, two participants use them once a month or less, one participant several times a month,
three participants several times a week and one participant uses visualization tools every

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 165 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

workday. For this, users mainly use Excel (four), Power BI, Shiny R, MatPlotLib (each one) or
their own visualization tools including COVISE and Vistle. Visualization tools are also mainly
used for getting an overview of the data (six), trend analysis (two), identification of
correlations (two), cause-effect analysis (two), anomaly detection (one), visualization of
simulation results (one), comparison (one), visualization of geo-spatial information (one) and
holistic perspectives (one).
In the first tasks, users were requested to investigate data from one twitter conversation
related to the social network use case and answer questions by selecting valid data fields and
creating visualizations. Additional hints were provided to support users in solving the tasks.
Task 1:

 T1.1: Which type of tweets are available?
 T1.2: Which tweet type is the most frequent one?
 T1.3: How often does it occur?
 T1.4: What is the number of all neutral sentiments for NEOS (sentiment_ neos = 0) for

type "quotes" only?
 T1.5: What is the number of quote-retweets for NEOS if you brush the data for

sentiment_fpoe = positive (1) in a parallel coordinates visualization?

In the second task, a dashboard containing multiple visualizations for seven twitter
conversations, again from the social network use case, has been shared with the participants
to respond to a set of questions.
Task 2:

 T2.1: There is at least one conversation with overall (> 20) positive sentiments for both
political parties, NEOS and FPÖ (yes/no).

 T2.2: There is at least one conversation with overall (> 20) positive sentiments for FPÖ
only (yes/no).

 T2.3: There is at least one conversation with overall (> 20) positive sentiments for
NEOS only (yes/no).

 T2.4: There is at least one conversation with overall (< -20) negative sentiments for
FPÖ only (yes/no)

 T2.5: There is at least one conversation with overall (< -20) negative sentiments for
NEOS only (yes/no)

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 166 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

 T2.6: There is at least one conversation with a similar (difference < 10) sum of
sentiments for NEOS and FPÖ (yes/no).

 T2.7: The conversation with most positive sentiments for NEOS is?
 T2.8: The conversation with most positive sentiments for FPÖ is?
 T2.9: Investigate whether, and if so, which conversations have either a positive (1) or

a negative (-1) initial tweet (type=tweet) for NEOS which turns into the opposite for
any of its responses (retweet, quote, quote-retweet).

The visualizations provided in the dashboard for task 2 are shown in Figure 95, Figure 96 and
Figure 97. Figure 95 shows the sum of all sentiments for each conversation (colour) for the
two political parties on the x- (NEOS) and y-axis (FPÖ). High values indicate a high number of
positive sentiments for the corresponding party, negative sentiments decrease these values.
Figure 96 shows a parallel coordinates visualization with four axes. The first one, which always
specifies the colour, shows the different tweet types, which are in this case tweet, retweet,
quote and quote-retweet. The second axis shows the corresponding conversations, and the
last two axes show the sentiments for the two political parties. In contrast to Figure 95, the
data in the parallel coordinates visualization is not aggregated. Figure 97 shows the sum of all
sentiments (colour) for each conversation and tweet type on the left side and the number
(colour) of tweets for each tweet type and sentiment on the right side. In the heat map, low
values are encoded yellow, while high values are encoded red. The upper heat maps belong
to NEOS, the lower ones to FPÖ.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 167 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 95. Scatter plot showing sum of sentiments for NEOS (x-axis) and FPÖ (y-axis) for different twitterconversations (colour).

Figure 96. Parallel coordinates showing connections between tweet types, conversations and sentiments forNEOS and FPÖ

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 168 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 97. Heat maps showing sum of all sentiments (colour) for different tweet types for each twitterconversation (left charts) and number (colour) of sentiments for each tweet type (right charts) for NEOS (uppercharts) and FPÖ (lower charts).

Figure 98 shows the task completion for each sub-task. Task 2.7 has been successfully
completed by all participants, whereas two tasks, T1.4 and T2.9 have been completed
successfully by only three participants each. Besides creating and/or investigating
visualizations, users were requested to perform brushes within the visualizations and
interpret the results in the same or other visualizations. The partially lower task completion
rate for T2.1 to T2.6 was due to investigating less suitable visualizations which did not reveal
the requested information easily. Furthermore, anonymous user interactions have been
recorded during the task execution to gain additional insights.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 169 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 98. Task completion in the user study of Visualizer for eight participants.

After both main tasks, users were requested to provide feedback about their task load using
the NASA Task Load Index [52].
Results for both tasks are shown in Figure 99 and Figure 100. This corresponds also with the
feedback provided by the participants, stating that it was easier for them to investigate the
provided visualizations in task two compared to selecting required data fields and creating
the visualizations by themselves in the first task. Other than that, users mainly had difficulties
in investigating the different brushing methods in the visualizations and identify whether
there are active brushes. However, the provided functionalities in Visualizer have beenmainly
perceived as useful (rating between 4-7 on a 7-point Likert scale) and users did not have
difficulties in using them. These are creating visualizations, re-positioning and resizing
visualizations, data aggregation for visualizations, filtering and specifying incoming event
handling as well as coordinated brushing over multiple visualizations. All participants stated
that Visualizer helped them in gaining insights in the data (average rating of 5.875 on a seven-
point Likert scale). However, most of them did not feel confident in using Visualizer and stated
to need assistance. The overall feedback provided by the users was very positive. They
highlighted that Visualizer was easy to use, they appreciated the UI design, the coordination
of visualizations using multiple brushes and the number of features available in Visualizer.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 170 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 99. Task 1 user feedback for task load on a seven-point scale.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 171 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 100. Task 2 user feedback for task load on a seven-point scale.
11.2.4 Dashboard results
For the social network use case, different dashboards have been created and described in
previous sections (AI Methods and Benchmarking) and will not be described here in detail.
Until the end of the project, new visualizations, e.g., stacked bar chart, will be included and
existing visualizations and interaction possibilities will be extended.
For the migration use case, data has been transformed, visualizations have been extended
and improved, e.g. geo-visualization or line chart, to support the requirements of the use
case.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 172 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 101. Dashboard example for the migration use case.
Figure 101 shows a dashboard example for themigration use case. Depending on the selection
in the geo-visualization, data is shown in the line chart or can be highlighted on demand.

Figure 102. Dashboard example for COVID-19 simulation data.
Figure 102 shows a dashboard example for the COVID-19 simulation data.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 173 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

12Coupling technologies
Coupling technologies are used to combine different (existing) applications to make them
work together for an overarching purpose. Coupling technologies are a staple in themultiscale
and hybrid simulation approaches, and a range of generic technologies have emerged in
recent years, each with their unique added values.

12.1 Migration Pilot
Within the Migration pilot we have established two cyclic (two-way) coupling approaches for
multiscale simulations and couple the macro and micro scale models. The first approach is file
I/O coupling and the second approach is MUSCLE3 [30]. Besides, by using an acyclic (one-way)
coupling, we have incorporated weather data provided by ECMWF including river discharge
level and precipitation level datasets, to examine the influence of different levels of the
mentioned climate factors on the movement of forced displaced people. With this, we aimed
to answer the following questions: How weather conditions like precipitation level affect
refugees’ decision to move from a location? How do they affect refugees’ speed? How river
discharge levels influence refugees’ movement? And more importantly, how to reflect all
these assumptions in a rule set for future models? Therefore, we examined our proposed
approach for the South Sudan conflict with real data. We described the application of these
approaches in some detail in D4.3 and D3.4. Figure 103 illustrates the schematic scale
Separation Map for data coupling between macroscale and microscale models and with
weather forecast data. The macro- and micro-scale model have identical time scales and
overlapping spatial scales, and are coupled cyclically. In addition, the micro-scale model
receives data from the weather forecast data source (or from ECMWF Climate Data Store in
the case of historical data).
We planned to perform a performance test of the different coupling approaches and aimed
to provide first coupling performance results in this report. However, due to the MUSCLE3
difficulties in the execution of high number of multiscale simulation ensembles on the Eagle
supercomputer, we could only perform these tests based on file I/O coupling on the Eagle.
Hopefully, the results of file I/O coupling show the coupling rules are indeed scientifically
robust. The results are presented in the D4.4.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 174 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 103. Scale Separation Map of Weather Data Coupled Multiscale model.

12.2 Urban Air Pollution Pilot
The pre-processing workflow of the Urban Air Pollution Pilot has integrated many different
tools and applications (Figure 104). Firstly, the predefined input files like meshes and geo files.
The second step is to load all necessary modules and tools to run the workflow, it checks the
user parameters, the missing input files and the simulation settings.
The missing files will be generated according to user parameters. If random traffic is chosen it
will generate traffic to the geometry and run it, if not then precompiled traffic output or
predefined simulation files are loaded and generating the traffic output EMI file.
After the traffic we have to provide weather data to the pilot application. This can be done in
several ways. The most common option is that the dataset already has weather data, if not
then it can be directly download from ECMWF using ECMWF provided EWcloud workflow or
custom made downloader developed by us based on ECMWF polytope python library. Last
but not least, synthetic wind data can be generated based on user inputs to test special
scenarios If all the necessary inputs are present, then the Computational Fluid Dynamics (CFD)
will be prepared based on user parameters, and the simulation starts running.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 175 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

After the CFD simulation is done our postprocessing tools start if user checked this option,
and final results are generated.

Figure 104. Pre-processing workflow of Urban Air Pollution pilot.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 176 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

12.3 Social Networks Pilot
The social networks pilot focusses on models and simulation of the spread of messages in
social media. Apart from deriving proper random graphmodels for real-world social networks,
we are also interested in understanding the dynamic processes within a social network. Our
simulator uses several characteristics of the author of a message and the message itself, and
simulates the spread of corresponding messages through the network. However, depending
on the underlying events, these characteristics may change or they may change the spreading
behaviour of a message. To account for these changes, a close coupling with live Twitter data
is indispensable.
The coupling task builds on a Twitter monitoring system, which focusses on certain topics
(defined by a user w.r.t. keywords or hashtags), and acquires data about the parameters of
the messages regarding these topics. These parameters are compared to the parameters used
by the simulator, and if a predefined difference between the two is observed, then the
simulator is notified and its parameters are updated. Subsequently, the simulator can be used
for forecasts about the message flow with the updated parameters. Here, the coupling is
crucial in order to run the simulator continuously with realistic parameters, and to provide
accurate forecasts about the dynamic processes behind the spread of messages.
The coupling has been realized through two Cloudify blueprints. The first blueprint invokes
the Twitter monitor. From the monitor, the simulator can be launched through the second
blueprint. The social networks simulator could be launched asynchronously from the Twitter
monitor (Figure 105). In this case, we are dealing with a two-step processing.
The Twitter Monitor consists of the Twitter listener and the Twitter analyser. The listener is
connected to the Twitter Streaming API and it collects Tweets of a topic that is given as a user
input. The Twitter analyser summarizes the collected Tweets and generates statistics w.r.t.
certain features of the Tweets and authors of the Tweets. The same features are also used by
the simulator. The Twitter analyser will upload the statistics CSV file to the project CKAN
platform, if any of the pre-defined thresholds is exceeded. After uploading the statistics, the
social networks simulator is deployed through its blueprint. It means, a simulation run will be
created, installed and executed on one of the available HPC clusters. The results are uploaded
again to the CKAN.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 177 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

Figure 105. The workflow of Twitter Monitor, Cloudify blueprints and Social Network Simulator.

12.4 Weather data
ECMWF’s weather forecasts, climate reanalysis, global hydrological, and Copernicus
Atmosphere Monitoring Service (CAMS) data play a key role in coupling with the simulated
models of migration and UAP pilots. The overall strategy for the coupling of weather and
climate data consists of two stages: (a) static coupling of climate reanalysis data, (b) dynamic
coupling via a RESTful API. This section provides an update of its progress.
The development of the last year has aimed at increasing the security and the performances
of the system. Here is a detailed list of the changes to the WCDA:

 WCDA is a now able to authenticate the requests against the HiDALGO Keycloak
system. Users can request data directly with the HiDALGO accounts. This integration
allows requests to be submitted from HiDALGO orchestrator using the users’
credentials common to HiDALGO portal.

 Users can request and retrieve real-time forecast data. Previously, a limit was in place
to allow only data older than 30 days. This was due to licences issues that have now
been resolved in the consortium.

 Secure server connection through HTTPS has been enabled.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 178 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

 A quality of service (QoS) mechanism has been implemented to guarantee a certain
level of performance to all users. In the case of HiDALGO the following rules have been
set:o Max of 6 simultaneous requests per usero Max of 15 simultaneous requests among all HiDALGO users

 The following performance improvements have been achieved:o Requests larger than 2GB are now supportedo Improvement in processing and interpolation speedo Fixed failing of requests involving interpolations of large fields

As part of the effort to increase the security of the system, a penetration testing for WCDA
was procured. This to ensure that the service provided over openly-accessible web ports is
safe and secure, both from the perspective of service resilience and internal data security, but
also to ensure that communication between WCDA servers and clients is secure. Penetration
testing was performed by Bulletproof [53]. The first test ran in March 2021 and raised a
number of issues:

1. Incorrect cache control headers,
2. Ability to see the names of collections which you could not access,
3. Ability to downgrade from HTTPS to HTTP,
4. Limited input validation on requests,
5. Access keys had no expiration date,
6. Our service was using outdated cryptographic ciphers (TLSv1.0 and TLSv1.1),
7. Ability to access the download endpoint (when a data access request is complete)

without authentication, the UUID of the request is known.
1, 2, 3, and 5 have been fixed: HTTP access has been disabled, cache control headers have
been implemented, and authentication/authorization has been improved. 6 has been mostly
resolved by disabling TLSv1.0 and TLSv.1.1. [4] is by design, as WCDA is not intending to
inspect request payloads but merely pass them on to the back-end data stores (for example,
ECMWF's MARS archive) – the backend must do input validation. WCDA is secure against
injection attacks in the request payload and malformed requests as they are simply rejected
by the backend.
7 is also by design, as it is intended that a request can bemade by a user/orchestrator for later
download on compute-oriented machines (such as HPC, HPDA or elastic cloud resources)

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 179 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

where it can be complicated to store user credentials safely. It is not possible to access other
user's downloads without knowing the version 4 UUID of the request, which it is deemed safe.
A second penetration testing was performed in September 2021 and confirmed that only
issues 4 and 7 remain (as intended), although there is still a minor point related to [6] which
should be addressed, concerning disabling of CBC ciphers.
This penetration testing gives confidence that access to WCDA is secure; and that it is
reasonably safe against malicious intrusion.

12.4.1 Weather data notification system
The development of the last year has also aimed at designing and integrating a weather data
notification system into HiDALGO infrastructure.
Recent adoption of Open Data policies and investments towards Cloud-based platforms have
attracted a growing number of consumers of ECMWF data. An example of these initiatives is
the European Weather Cloud (EWCloud), where users wish to run automated, real-time tasks
or workflows closer to the latest data produced by the model in the ECMWF HPC facility, thus
avoiding costly data transfers out of the data centre. This trend is likely to increase together
with the exponential growth of weather forecast data. From an operational perspective, this
convergence of HPC and cloud is dependent on timely synchronisation with the forecast
schedule. A mechanism is needed to notify the consumers of specific data availability in a
scalable manner and provide the capability to automatically trigger their workflows based on
this data.
To accomplish this, ECMWF is developing a system, named Aviso, designed to notify of
availability of real-time forecast data or derived products, and to trigger user-defined
workflows in an automated fashion. End-users can build their workflow based on events,
using a When <this>... Do <that> logic directly linked to ECMWF metadata semantics. The
system is composed of a server application based on a persistent key-value store, leveraging
modern technologies such as etcd [54], to provide consistency, transactionality, reliability
and scalability to the end-users. The client side is a lightweight Python application providing
a CLI interface as well as a Python API for easy integration in the users’ workflows. Finally, the
notifications can be exchanged using CloudEvents messages; this allows workflows that span
across multiple data centres and cloud-based infrastructures.
ECMWF has deployed Aviso as a notification service for the availability of the data produced
by the Centre. Figure 106 shows ECMWF dataflow; it starts from the data assimilation of

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 180 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

observations, it then follows to the generation of the model output, the real-time global
forecast. This is a time-critical step relevant for users’ workflows and therefore Aviso is
notified when this data is stored in the archive. The dataflow continues with the generation
of derived products that are then disseminated via ECMWFdissemination system. The delivery
of these products is also notified to Aviso as users depend on custom products for their
downstream applications. Once notified, Aviso will forward the relevant notifications to all
the clients registered. These are processes running in the EWCloud infrastructure, set by the
end users to triggering further data processing.

Figure 106. Events submitted to Aviso from the ECMWF Dataflow.

This system is opensource and available on GitHub [55]. The project is funded also by other
European projects. In HiDALGO the aim is to adapt it to the Urban Air Pollution pilot workflow.
As described in D5.7 and D4.4, ECMWF has provided an EWCloud VM for running custom
postprocessing for the Urban Air Pollution workflow. This workflow is triggered by the
HiDALGO portal via the Cloudify orchestrator. Cloudify interfaces with EWCloud VM that
requests forecast data, processes it and then copies the output to an external CKAN store.
Once in CKAN, the data are used by the UAP simulation to compute high resolution urban air
maps. The workflow here described runs on request by the end users interacting with the

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 181 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

HiDALGO portal where they can select for which day and location they wish to run the
simulation. By doing this, end users can create maps related to days in the past.
If this workflow was to become an operational service, time would be critical and running this
simulation with the latest forecast data would be essential. Aviso allows to run this workflow
only when the latest forecast data is available. This enables end users to define a data
responsive processing pipeline. In terms of usability, Aviso is completely transparent to end
users, which, in the definition of their simulations, have to select the option “real-time” rather
than a day in the past.

12.5 Sensor data
Sensory Data are used by Urban Air Pollution Pilot. To have an accurate simulation, we have
to collect data from the real life traffic, to create a specific traffic simulation and to validate it.
To validate the whole simulation, we deployed Bosch AIRQ sensory with 5 sensors to collect
emission data.
12.5.1 AIRQ sensory
Bosch Air Quality Sensor data is collected every day at midnight from 5 sensors across Győr
through Bosch IoT platform. We have developed a downloader tool for that, which can
download data for the given date from the IoT platform. After it is downloaded, it’s formatted
and uploaded to CKAN (Figure 107).

Figure 107. AIRQ sensory data flow.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 182 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

The data structure is the following:
 ESP_0_RH_AVG: Relative Humidity
 ESP_0_TEMP_AVG: Temperature average
 ES_0_PRESS: Air Pressure
 NO2_1_CORR: NO2 Concentration
 O3_0_CORR: O3 Concentration
 PS_0_PM10_CORR: PM10 Concentration
 PS_0_PM2P5_CORR: PM2.5 Concentration
 Type: DATA
 UTC: Timestamp
 deviceID: Device ID

The uploaded data has a 1-minute resolution and can be retrieved using the CKAN API. We
have developed a simple downloader tool which can download data with the given dates.
These daily merged data have typically around 25M size. Thanks to the simple CSV format
most tools can directly work with it; only a minor programming is needed to use these data
sources. There are five sensors deployed around the city, each in a frequented place, where
most of the traffic goes through each day in the morning and in the afternoon (Figure 108).

Figure 108. Location of the Bosch AIRQ sensors.
12.5.2 Camera Data
The camera data flow is very similar to AIRQ sensory data. When a camera sees a car, it
classifies the category of the car, registers its speed and encrypts the plate number with one

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 183 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

way encryption (so decryption is not possible) and sends the data to the GDS server deployed
in the University by ARH. After that we create 2 different datasets, with and without plate
numbers, and upload it to CKAN (Figure 109).

Figure 109. Traffic data flow.
ARH deployed more than 80 cameras in Győr to monitor and collect data from the whole city
(Figure 110).

Figure 110. Camera locations.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 184 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

The exact locations of the cameras are shown in Figure 110, each location has more than one
camera installed. The numbering of the locations is based on the Hungarian Road Maintainer
intersection numbering, so camera H561 is the first camera in the H056 section.

12.6 Telecommunication data
Telecommunication data are coupled with the migration and social network pilots through a
REST API. The API is a flexible HTTP based web technology, that could be used by different
client applications and programming languages.
The API v1.0 endpoints, see Table 38, can be accessed using the following HTTPS URL [56].
Every member in the consortium can request an account and a key to use the API.

Endpoint Endpoint Path Method Description
Query /api/v1/query/ GET Requests the CDRs of a specific time period

and origin and destination prefix.
Depending on the use case/pilot (migration
or social networks) the aggregation type of
the CDRs can be set.

Check /api/v1/check/ GET Checks if a specific query with a given
request_id is completed and ready for
download or not yet.

Download /api/v1/download/ GET Download the data of a specific query by a
given request_id. The returned data can be
in plain or zipped csv.

Table 38 . Endpoints of the Call Detail Record (CDR) API.
In the following, the workflow of a query is described.

1. Figure 111 shows that the client sends a POST query to retrieve Call Detail Records
(CDRs) of a specific time period, origin and destination prefixes using this URL:

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 185 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

https://hidalgo.msc-
sevices.net/api/v1/query/{aggregation_type}/{from_date}/{to_date}/{origin_prefix}/{
dest_prefix}/. Table 39 provides a description of the different parameters of a query.
The server returns a JSON object containing the parameters sent in the query plus a
server-side generated request-id that can be used in the other endpoints.

2. The client can check if a specific query with a given request_id is completed and ready
for download or not yet using this URL: https://hidalgo-cdrs.msc-
services.net/api/v1/check/{request_id}. The server returns a JSON file containing the
request_id and a status attribute (IN_PROGRESS, COMPLETED, ERROR).
The data can be downloaded in plain or zipped CSV using this URL: https://hidalgo-cdrs.msc-services.net/api/v1/download/{request_id}/{format}{request_id}/{format}. The CDRs are aggregateddepending on the migration or social network use cases. Table 39 and Table 39. Parameters Endpoints.

3. describe the data when the user requested plain (used by themigration pilot) or social
(used by the social network pilot), respectively.

The server accepts only query requests with a time period not longer than a month in
order to speed up the processing of the requests.

Figure 111. Workflow of a query.

Name Type Parameter
Type

Mandatory
or optional

Description

aggregation_type String Path mandatory The CDRs are aggregated
according to the migration (plain)

https://hidalgo.msc-sevices.net/api/v1/query/%7baggregation_type%7d/%7bfrom_date%7d/%7bto_date%7d/%7borigin_prefix%7d/%7bdest_prefix%7d/
https://hidalgo.msc-sevices.net/api/v1/query/%7baggregation_type%7d/%7bfrom_date%7d/%7bto_date%7d/%7borigin_prefix%7d/%7bdest_prefix%7d/
https://hidalgo.msc-sevices.net/api/v1/query/%7baggregation_type%7d/%7bfrom_date%7d/%7bto_date%7d/%7borigin_prefix%7d/%7bdest_prefix%7d/
https://hidalgo-cdrs.msc-services.net/api/v1/check/%7brequest_id%7d
https://hidalgo-cdrs.msc-services.net/api/v1/check/%7brequest_id%7d
https://hidalgo-cdrs.msc-services.net/api/v1/download/%7brequest_id%7d/%7bformat%7d%7brequest_id%7d/%7bformat%7d
https://hidalgo-cdrs.msc-services.net/api/v1/download/%7brequest_id%7d/%7bformat%7d%7brequest_id%7d/%7bformat%7d

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 186 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

or social network (social) pilots
from_date Date Path mandatory Starting date in UTC (e.g. 2017-

02-02-1600)
to_date Date Path mandatory End date in UTC (e.g. 2018-06-

1600)
origin_prefix String Path mandatory Prefix of the origin country
dest_prefix String Path mandatory Prefix of the destination country
api_key String GET mandatory API key

Table 39. Parameters Endpoints.

Field Description
TIMESTAMP Timestamp when call is initiated
A_NUMBER Hashed number of calling party
B_NUMBER Hashed number of called party
A_NETWORK Network of calling party
B_NETWORK Network of called party
CALL_DURATION Call duration, if call is established
A_ROAMING Roaming network of the calling party
A_GPS_LOCATION GPS location of the city (A_NUMBER) if a

home call is initiated
B_GPS_LOCATION GPS location of the city (B_NUMBER) if a

home call is initiated
Table 40. Description of the plain CDRs.

B_numbers Description
(B_number_1, B_network) [(A_number_1, country, A_network, number of calls),

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 187 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

B_numbers Description
(A_number_2, country, A_network, number of calls), ….]

(B_number_2, B_network) [(A_number_1, country, A_network, number of calls),
(A_number_2, country, A_network, number of calls), ….]

… …
Table 41. An example of aggregated CDRs for the social network pilot.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 188 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

13Conclusions
This document delivered the information about the final status of the work in work package
3. The leitmotif of this publication was to provide high-quality information on the evaluation
of application performance and techniques to achieve it. The achievements in the areas were
highly stressed: co-design, optimization and profiling of HPC pilot’s simulations, infrastructure
benchmarking and development of applications for HPDA, the data management system
improvements, unified secure access to resources, visualization enhancements and delivering
coupling technologies facilitating seamless module integration.
First of all, it should be mentioned that all applications developed under the HiDALGO project
have undergone a process of significant development from single-threaded applications to
highly parallelized and optimized applications that consciously use the infrastructure on which
they are run. One of the most visible sign of the progress achieved in the application
development is exceeding the KPI scalability indicator not for one but two pilot applications:
OpenFoam from Urban Air Pollution (100 096 cores) and KPM from Social Network (more
than 130k cores). This is substantial progress comparing the previous report (D3.4): Urban Air
Pollution (4k cores) and KPM from Social Network (32k cores).
Thanks to the numerous tests and analyses carried out, we know how applications behave in
various infrastructure environments and what to expect when running in various
configurations. We learned that Flee performs better on newer-generation systems (Hawk,
Altair), OpenFOAM benefits from the fat nodes (Hawk), which at the same way impede its
scalability on higher core counts, KPM application is computationally efficient but requires
tuning of its communication, SN-simulator is heavily unbalanced but can be efficiently scaled
on modern systems (Vulcan, Altair).
Much effort has also been invested in applying various optimization techniques. It required
an in-depth knowledge of the application, fragments generating the highest load, and only
then choosing a solution, whether in the hardware or software range, to increase
performance. In many cases, however, it was possible to do it, by a dozen or so percent in the
scale of the entire application. Flee overall performance was improved in a range from 1.4x
to 1.8x, OpenFOAM improved parallel efficiency from around 8% to more than 47%, speedup
of SN Simulator and KPM by means of various methods improved from 2 to 4 times.
As part of the activities carried out in the WP3 package, several data analytics applications
were prepared. In the case of the Migration pilot, there was a statistical analysis of the
simulation results. For the Urban Air Pollution pilot, two applications were developed in the

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 189 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

field of Snapshot Matrix SVD (post-processing of snapshot matrices) and Air quality Index
(indicating air pollution levels). The SN pilot was equipped with analytics that allow to
determine statistics from real-world Twitter data that can be then compared with the output
of the Twitter simulator, in order to verify simulator's accuracy in predicting Twitter user
behaviour.
Facilitation of the CKAN by new extension enabling new transfer protocols improved overall
data management performance in this respect. This is especially true for transporting files
larger than 10GB.
Ensuring transparency in access to many services constituting the elements of the HiDALGO
landscape required the preparation of a solution ensuring SSO. It was developed in
collaboration with WP5 based on solutions provided by Hashicorp's Vault, Keyclock IDM and
Cloudify with its Croupier extension. This allowed to meet the overriding condition of not
installing or configuring anything on the remote server side, which is often prohibited due to
security policy.
The implementation of coupling technologies was based on solutions specific to individual
pilots. For the Migration pilot two cyclic (two-way) coupling approaches for multiscale
simulations and couple the macro and micro scale models was established. In case of Urban
Air Pollution a pre-processing workflow that integrates many different tools and applications
was designed. The coupling task on Twitter monitoring system for Social Network, is built
upon flagging certain topics and acquiring data on message parameters regarding these
topics. As a complementary functionality for coupling technologies, a set of operations has
been implemented that allow to download data from external sources, e.g. services for
weather, air quality, street camera and telecommunication.
In conclusion, it should be noted that the WP3 package significantly contributed to the
development of tools in the HiDALGO project, both in terms of the functionality provided as
part of the designed workflow (data analytics, data management, security, visualizations,
coupling technologies) and the efficiency achieved by these applications (co-design,
scalability, ensemble scenarios, accelerators utilization).

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 190 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

References

[1] P. N., "HiDALGO D3.1 Report on Benchmarking and Optimisation v1.8 - Revised version,"
2021.

[2] L. M., "Initial Specifications for HPC Scalability Optimisation, HPDA Model
Implementation, Data Management, Visualisation and Coupling Technologies - Revised
version," 2021.

[3] L. M., "Intermediate Report on Implementation and Optimisation Strategies," 2021.
[4] G. D., "Intermediate Report on Benchmarking, Implementation, Optimisation Strategies

and Coupling Technologies," 2021.
[5] G. D., "Final Implementation Report of the Pilot and Future Applications," 2022.
[6] G. S., "Final Benchmark Results for Innovative Architectures," 2022.
[7] K. M., "Final Report on Requirements, Components and Workflow Integration," 2021.
[8] "Performance Optimisation and Productivity - A Centre of Excellence in HPC," [Online].

Available: https://pop-coe.eu/.
[9] "The Python Profilers," 2022. [Online]. Available:

https://docs.python.org/3/library/profile.html.
[10] "A light-weight MPI profiler," 2022. [Online]. Available: https://software.llnl.gov/mpiP/.
[11] "Linux profiling with performance counters," 2022. [Online]. Available:

https://perf.wiki.kernel.org/index.php/Main_Page.
[12] "POP - list of metrics," [Online]. Available: https://co-design.pop-

coe.eu/metrics/index.html.
[13] "Scalasca," [Online]. Available: https://www.scalasca.org/.
[14] "Score-P - Scalable Performance Measurement Infrastructure for Parallel Codes,"

[Online]. Available: https://www.vi-hps.org/projects/score-p/.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 191 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

[15] "Flee 2.0," 2021. [Online]. Available:
https://github.com/djgroen/flee/releases/tag/v2.0.

[16] "cProfile - the Python Profilers," [Online]. Available:
https://docs.python.org/3/library/profile.html.

[17] "OpenFOAM," [Online]. Available: https://www.openfoam.com/.
[18] KPM, "KPM application," 2022. [Online]. Available: https://github.com/sarming/kpm.
[19] SNSIM, "Social Network Simulator," 2022. [Online]. Available:

https://github.com/sarming/propagation.
[20] "Stanford Network Analysis Platform," 2022. [Online]. Available:

https://snap.stanford.edu.
[21] "PRACE project," [Online]. Available: https://prace-ri.eu/.
[22] "MareNostrum," 2022. [Online]. Available:

https://www.bsc.es/marenostrum/marenostrum.
[23] "SuperMUC," 2022. [Online]. Available: https://doku.lrz.de/display/PUBLIC/SuperMUC-

NG.
[24] "SNAP," 2022. [Online]. Available: https://snap.stanford.edu/data/.
[25] "Pokec at CKAN," 2022. [Online]. Available:

https://ckan.hidalgoproject.eu/dataset/pokec-relationship-graphs.
[26] D. Suleimenova, H. Arabnejad,W. N. Edeling and D. Groen, "Sensitivity-driven simulation

development: a case study in forced migration," Philosophical Transactions of the Royal
Scociety A, 29 March 2021.

[27] D. Groen, D. Bell, H. Arabnejad, D. Suleimenova, S. J. E. Taylor and A. Anagnostou,
"Towards Modelling the Effect of Evolving Violence on Forced Migration,"
Computational Science – ICCS 2021, vol. 12746, p. 502, 2021.

[28] "The Armed Conflict Location & Event Data Project," [Online]. Available:
https://acleddata.com/.

[29] "UNHCR data portal," 2022. [Online]. Available: https://data2.unhcr.org/en/search.

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 192 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

[30] "Muscle 3," [Online]. Available: http://muscle3.readthedocs.io.
[31] "Polytope," [Online]. Available: https://github.com/ecmwf-projects/polytope-server.
[32] "NUMBA," 2022. [Online]. Available: https://numba.pydata.org/.
[33] "Excellerat project," [Online]. Available: https://www.excellerat.eu/.
[34] L. M., "Innovative HPC Trends and the HiDALGO Benchmarks," 2022. [Online].
[35] "RapidCFD - OpenFOAM running on GPU," [Online]. Available: https://sim-

flow.com/rapid-cfd-gpu/.
[36] "CUDA from NVIDIA," [Online]. Available: https://developer.nvidia.com/cuda-zone.
[37] "Apache Spark," [Online]. Available: https://spark.apache.org/.
[38] "The MapReduce paradigm," [Online]. Available:

https://www.ibm.com/docs/en/netezza?topic=guide-mapreduce-paradigm.
[39] "Apache Hadoop," [Online]. Available: https://hadoop.apache.org/.
[40] "Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008,"

[Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/LSU/?uri=celex:32008L0050.

[41] "Apache Spark Machine Learning Library (MLlib)," [Online]. Available:
https://spark.apache.org/docs/latest/ml-guide.html.

[42] "Dimensionality Reduction - RDD-based API," 2022. [Online]. Available:
https://spark.apache.org/docs/latest//mllib-dimensionality-reduction.html.

[43] "Python Graphframes library," [Online]. Available:
https://pypi.org/project/graphframes/.

[44] S. Xie, R. Girshick, P. Dollar, Z. Tu and K. He, "Aggregated Residual Transformations for
Deep Neural Networks".

[45] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks For Large-Scale
Image Recognition," no. https://arxiv.org/pdf/1409.1556.pdf, 2015.

[46] "PyTorch Dataparallel mechanism," [Online]. Available:

Document name: D3.5 Final Report on Benchmarking, Implementation,Optimisation Strategies and Coupling Technologies Page: 193 of 174
Reference: D3.5 Dissemination: PU Version: 1.0 Status: Final

https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html.
[47] "CKAN," [Online]. Available: https://ckan.org.
[48] "HiDALGO Keyclock IDM," no. https://hidalgo-idm.hlrs.de/, 2022.
[49] "HiDALGO CKAN Portal," 2022. [Online]. Available: https://ckan.hidalgo-project.eu/.
[50] "Vault by HashiCorp," 2022. [Online]. Available: https://www.vaultproject.io/.
[51] "Visualizer," 2022. [Online]. Available: https://visualization.hidalgo-project.eu/.
[52] "NASA Task Load Index," [Online]. Available:

https://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf.
[53] "Comprehensive penetration testing from certified experts," [Online]. Available:

https://www.bulletproof.co.uk/penetration-testing.
[54] "A distributed, reliable key-value store for themost critical data of a distributed system,"

[Online]. Available: https://etcd.io/.
[55] "GitHub - Aviso," [Online]. Available: https://github.com/ecmwf/aviso.
[56] "Telecommunication data API," [Online]. Available: https://hidalgo-cdrs.msc-

services.net/api/.

