
This document is issued within the frame and for the purpose of the HiDALGO project. This project has received funding from the European Union’s Horizon2020 Framework Programmeunder Grant Agreement No. 824115. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the European Commission.The dissemination of this document reflects only the author’s view and the European Commission is not responsible for any use that may be made of the information it contains. Thisdeliverable is subject to final acceptance by the European Commission.This document and its content are the property of the HiDALGO Consortium. The content of all or parts of this document can be used and distributed provided that the HiDALGO projectand the document are properly referenced.Each HiDALGO Partner may use this document in conformity with the HiDALGO Consortium Grant Agreement provisions.(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement; CI: Classified, Int = Internal Working Document,information as referred to in Commission Decision 2001/844/EC.

HiDALGO
D5.8 Final Benchmark Results for Innovative

Architectures

Keywords:
New promising technologies, HPC, benchmarks, scalability, efficiency, exascale, GlobalChallenges, Global Systems Science

Document Identification
Status Final Due Date 30/01/2022
Version 1.0 Submission Date 11/02/2022

Related WP WP5 Document Reference D5.8
RelatedDeliverable(s) D3.1, D3.2, D3.3,D3.4, D3.5, D4.2,D4.3, D4.4, D5.5,D6.2, D6.4, D6.5, D6.6

Dissemination Level (*) PU

Lead Participant USTUTT Lead Author Sergiy Gogolenko
Contributors USTUTT

PSNC
ICCS
SZE
PLUS

Reviewers Konstantinos Nikas(ICCS)
Nabil Ben Said(MOON)

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 2 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors
Name Partner
Sergiy Gogolenko USTUTT
Lukasz Szustak PSNC
Krzesimir Samborski PSNC
Marcin Lawenda PSNC
Nikela Papadopoulou ICCS
László Környei SZE
Mátyás Constans SZE
Gregor Bankhamer PLUS

Document History
Version Date Change editors Changes

0.1 13/07/2021 Sergiy Gogolenko(USTUTT) TOC
0.2 03/10/2021 Sergiy Gogolenko(USTUTT) Contributions to Chapter 2 from USTUTT
0.3 13/11/2021 Sergiy Gogolenko(USTUTT) Contributions to Chapter 3 from USTUTT
0.4 15/12/2021 Sergiy Gogolenko(USTUTT) Merged contributions from PLUS and ICCS
0.5 23/12/2021 Sergiy Gogolenko(USTUTT) Added Intro, Conclusions, and Annexes
0.6 17/01/2022 Sergiy Gogolenko(USTUTT) Version for internal review
0.7 04/02/2022 Sergiy Gogolenko(USTUTT) Addressing review comments. Finalversion to be submitted.
1.0 11/02/2022 Francisco JavierNieto de Santos(ATOS)

FINAL VERSION TO BE SUBMITTED

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 3 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Quality Control
Role Who (Partner short name) ApprovalDate
Deliverable Leader Sergiy Gogolenko (USTUTT) 05/02/2022
Quality Manager Marcin Lawenda (PSNC) 07/02/2022
Project Coordinator Francisco Javier Nieto de Santos (ATOS) 11/02/2022

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 4 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Table of Contents
Document Information..2
Table of Contents..4
List of Tables..6
List of Figures ..7
List of Acronyms..8
Executive Summary...11
1 Introduction..12
1.1 Purpose of the document...12
1.2 Relation to other project work..12
1.3 Structure of the document ...13

2 System components and configurations of the testbeds...14
2.1 Recap of the trends in innovative HPC architectures ... 14
2.2 General-purpose CPUs..15
2.2.1 Intel Xeon(R) Platinum 8268 (Altair node processor)......................................17
2.2.2 AMD Epyc Milan (AMD x86) ..17
2.2.3 Huawei Kunpeng 920 (ARM Hi1620) ...17

2.3 Accelerators..18
2.3.1 Nvidia Ampere A100..18
2.3.2 AMD Instinct MI100...20

2.4 Testbed configurations ...20
3 HiDALGO Benchmark Suite...24
3.1 Structure of the HiDALGO Benchmark Suite...24
3.2 Kernels of the HiDALGO Benchmark Suite..25
3.2.1 Hotspots in the simulation data flows of pilots .. 25
3.2.2 Simulation components of the benchmark...26
3.2.3 Pre- and post-processing components of the benchmark......................................32
3.3 Automation scripts for deployment of the benchmark and collecting results37
3.4 Methodology and tools for collecting measurements and reporting results38

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 5 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

3.5 Comparison with another benchmarks...42
4 Benchmark findings..45
4.1 Migration use case..45
4.1.1 Experimental setup...45
4.1.2 Results discussion..46
4.2 Urban Air Pollution use case...50
4.2.1 Experimental setup...50
4.2.2 Results discussion..51
4.3 Social Network use case..55
4.3.1 Experimental setup...55
4.3.2 Results discussion..56

5 Conclusion..58
References...60
Annex A. Quick start to the automated deployment with the HiDALGO benchmark.............63
Annex B. Topology of the testbeds...65
CPU testbeds..65
GPU testbeds...67

Annex C. Auxiliary benchmark results...69
Migration use case...69
Urban Air Pollution use case..70

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 6 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

List of Tables
Table 1: Microprocessors used in the study..16
Table 2: GPUs used in the study...18
Table 3: Hardware and native software configuration of the CPU testbeds used in the study.............................21
Table 4: Hardware and native software configuration of the GPU testbeds used in the study............................22
Table 5: List of the CPU kernels in the HiDALGO benchmark suite..26
Table 6: List of the GPU kernels in the HiDALGO benchmark suite...26
Table 7: Inputs for the LGE kernel...34
Table 8: Parameters of the input maps for the LGE kernel...35
Table 9: Metrics collected per application..40
Table 10: Accordance between the kernels of the SPEC CPU 2017 benchmark suite and HiDALGO use cases (x
corresponds to 5 for SPECrate suite and 6 for SPECspeed suite)...43
Table 11: Accordance between the kernels of the CoeGSS benchmark suite and HiDALGO use cases.................44
Table 12: HiDALGO benchmark matrix ..45
Table 13: Software environment for the kernels of Migration use case on CPU testbeds (intel8268, amd7763
and armHi1620)..46
Table 14: Software environment for the kernels of UAP use case on CPU testbeds (intel8268, amd7763 and
armHi1620)...51
Table 15: Software environment for the kernels of UAP use case on GPU testbeds (nvA100 and amdMi100)....51
Table 16: Evaluation of the Fluids kernel on nvA100 testbed disabling all GPUs and enabling single GPU.........53
Table 17: Evaluation of the simpleFoam solver available in RapidCFD and OpenFOAM using intel8268 and
nvA100 testbeds. .. 54
Table 18: Software environment for the kernels of SNA use case on CPU testbeds (intel8268, amd7763 and
armHi1620)...55

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 7 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

List of Figures
Figure 1. Flee evaluation on CPU testbeds using 16 cores and using all cores of the testbed. ______________ 47
Figure 2. Evaluation of the osrm-extract subkernel of LGE kernel on CPU testbeds using 16 cores and using all
cores of the testbed. ___ 48
Figure 3. Evaluation of the osrm-contract subkernel of LGE kernel on CPU testbeds using 16 cores and using all
cores of the testbed. ___ 49
Figure 4. Evaluation of the lge-extract subkernel of LGE kernel on CPU testbeds using 16 cores and using all
cores of the testbed. ___ 50
Figure 5. Evaluation of the submodule simpleFoam on CPU testbeds using 16 cores and using all cores of the
testbed. ___ 52
Figure 6. Evaluation of the submodule pimpleFoam on CPU testbeds using 16 cores and using all cores of the
testbed. ___ 53
Figure 7. Evaluation of the SVD on GPU testbeds. __ 55
Figure 8. SN-Simulator evaluation on CPU testbeds using 16 cores and using all cores of the testbed._______56
Figure 9. KPM evaluation on CPU testbeds using 16 cores and using all cores of the testbed.______________57
Figure 10. Topology of the intel8268 testbed.__65
Figure 11. Topology of the armHi1620 testbed. __ 65
Figure 12. Topology of the amd7763 testbed. ___ 66
Figure 13. Topology of the nvA100 testbed (single package out of two identical). _______________________67
Figure 14. Topology of the amdMi100 testbed (single package out of two identical). ____________________ 68
Figure 15. Scaling of computing routing table and triangle pruning of LGE kernel with the number of cores on
CPU testbeds.___69
Figure 16. Change in the elapsed time and IPC with the size of the problem for SVD kernel on nvA100 testbed.70

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 8 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms
Abbreviation /Acronym Description
3D Three-dimensional
ABSS Agent-based social simulations
AMD Advanced Micro Devices, Inc.
AP Agent-parallel
API Application programming interface
ARM Advanced RISC Machines
ASP Agent-space-parallel
BF16 Brain Floating Point 16-bit format
ccNUMA Cache coherent NUMA
CDNA Compute DNA, data centre compute GPU by Advanced Micro Devices
CFD Computational fluid dynamics
CH Contraction hierarchies
CI/CD Continuous Integration / Continuous Deployment
CoeGSS Cluster of Excellence for Global System Science
CPU Central processing unit
CRP Customizable route planning
CSV Comma-separated values
CUDA Compute unified device architecture
D Deliverable
DL Deep learning
DRAM Dynamic random-access memory
EC European Commission
FAQ Frequently Asked Questions
FLOPS Floating point operations per second
FP Floating point format
FPGA Field-programmable Gate Array
FS Files system
GB Gigabyte
GC Global Challenge
GCC GNU compiler collection
GIS Geographic information system
GPC GPU processing clusters
GPGPU General-purpose computing on graphics processing units

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 9 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Abbreviation /Acronym Description
GPU Graphics processing unit
GSS Global system science
GUI Graphical User Interface
HBM2 High bandwidth memory, second generation
HDD Hard disk drive
HLRS High Performance Computing Center Stuttgart
HPC High Performance Computing
HTTPS HyperText Transfer Protocol Secure
IEEE Institute of Electrical and Electronics Engineers
INT Integer format
IO Input/output
IPC Instructions per cycles
ISO International Organization for Standardization
JIT Just in time
KPM Kernel-Polynomial-Method
LA Linear algebra
M Month
MIG Multi-instance GPU
MIG Migration
MLD Multilevel Dijkstra
MPI Message Passing Interface
NUMA Non-uniform memory access
NVLink Nvidia's multi-lane near-range communications link
NVM Non-volatile memory
NVRAM Non-volatile random-access memory
OS Operating system
OSM OpenStreetMap
OSRM Open Source Routing Machine
P2P Point-to-point
PBS Portable Batch System
PCIe Peripheral component interconnect express
PSNC Poznan Supercomputing and Networking Center
PUE Power Usage Effectiveness
PUNCH Partitioning with natural cuts
Q&A Questions and Answers
RAM Random-access memory

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 10 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Abbreviation /Acronym Description
REST Representational State Transfer
RISC Reduced instruction set computer
ROCm Radeon open compute
SLURM Simple Linux Utility for Resource Management
SM Streaming multiprocessors
SME Small- and Medium-scale Enterprise
SNA Social network analysis
SPEC Standard performance evaluation corporation
SR-IOV Single root input/output virtualization
SSD Solid-state drive
SSH Secure shell
SSL Secure Socket Layer
SVD Singular value decomposition
T Task
TB Terabyte
TF32 TensorFloat 32-bit format
TPCs Texture processing clusters
UAP Urban air pollution
URL Uniformed Resource Locator
VM Virtual Machine
VNNI Vector neural network instructions
VVUQ Verification, validation, and uncertainty quantification
WP Work package

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 11 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Executive Summary
D5.8 presents the final version of the HiDALGO benchmark suite and reports results of its
execution on five testbeds composed of the state-of-the-art CPUs and accelerators from
major vendors such as AMD, ARM (Huawei), Intel, and Nvidia. This work concludes activities
on the evaluation of the innovative HPC architectures for the domain of Global Challenges
(GC) conducted in the frame of HiDALGO project.
Our benchmark suite complements mature generic benchmark suites such as HPL, HPCG, or
SPEC, and benchmark suites for global systems science applications such as CoeGSS
benchmark suites in several way. It introduces a simple and portable methodology for
collecting and reporting benchmark results, a wide set of automation scripts, as well as a rich
set of benchmarks for CPUs and GPUs that cover computationally expensive data pre-/post-
processing and simulation kernels in the data flows of HiDALGO pilots.
In conjunction with WP3, information from this report can be used not only to understand
applications’ behaviour better and improve the general scalability, but also to build a co-
design baseline.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 12 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

1 Introduction
1.1 Purpose of the document
This deliverable (D5.8) is prepared in the context of Task 5.4 ofWP4, which pursues twomajor
goals: (i) to analyse promising technologies and (ii) to develop a benchmark suite in order to
improve application and system qualification in general. Specifically, D5.8 describes the final
version of the HiDALGO benchmark suite and presents the final benchmark results, which
have been executed on cutting-edge CPU and GPU testbeds. The HiDALGO benchmark suite
differs from alternative benchmark suites in a way that it accounts for the specifics of the
data flows in the use cases. Along with results obtained in WP3, results of this deliverable act
as a co-design baseline.
1.2 Relation to other project work
Since we designed the HiDALGO benchmark suite taking into account all software
components of the use cases as described in Chapter 3, this work is closely related to all
technical work packages working on the use cases' software. In WP4 andWP6, we developed
and reported the algorithms and the data flows of the use cases [2-8]. These were used to
define the kernels of the HiDALGO benchmark suite. In WP3, we deal with the
implementation, optimization and data management of the new tools [9-13]. As D5.8 reports
performance results on the new hardware and software solutions, this information can be
used to improve implementation and optimization of the tools in the frame of WP3.
Moreover, results from D3.1 [9], D3.4 [12] and D3.5 [13] provided a baseline for identifying
hotspots of the data flows of pilots, which serve as the kernels of the HiDALGO benchmark
suite. Similarly to some WP3 reports, D5.8 presents results for measuring performance.
Nevertheless, in contrast to WP3, this deliverable focuses on comparing the hardware
platforms, while the main focus of WP3 deliverables is put on the software optimization. As
a result, benchmarks of D5.8 complements reports of WP3 and act as a co-design baseline in
strong cooperation with WP3.
Last but not least, this text is the second of a series of reports focusing on the Task 5.4 of WP4
(D5.5 [1], D5.8). This deliverable continues discussion of the novel architectures conducted in
the D5.5 report [1] and extends it with the benchmark results for the novel testbeds.
1.3 Structure of the document
The rest of the document is organized as follows. Chapter 2 presents architecture of the
testbeds analysed in this report: after summarizing the trends in innovative HPC architectures

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 13 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

covered in D5.5, we discuss core computational units of the evaluated testbeds – CPUs and
GPUs – and outline testbed configurations. Chapter 3 describes structure, components, and
implementation of the HiDALGO benchmark suite. In particular, we motivate choice and
specify implementation of the kernels of the benchmark suite, as well as explain
benchmarking methodology and implementation of the automation mechanisms. We end
this chapter by comparing the HiDALGO benchmark suite with alternatives such as SPEC and
CoeGSS benchmark suites. Chapter 4 presents and analyses results of running the HiDALGO
benchmark suite on the testbeds from Chapter 2. Chapter 5 concludes this deliverable and
provides a summary. This document ends with three Annexes. Annex A contains short
instructions about the automated deployment of the HiDALGO benchmark suite on the
testbeds. Annex B holds visual representation for the system topology of the studied
testbeds. Annex C presents auxiliary results that go beyond the methodology of the HiDALGO
benchmark suite, yet help to understand major benchmark results better.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 14 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

2 System components and configurations of the
testbeds

We start with a short summary of the trends in innovative HPC architectures covered in details
in D5.5 [1]. Next, we provide an overview of the building blocks of the testbeds studied in this
deliverable such as processors, accelerators and memory. We finish this section providing an
overview of the testbed configurations.
2.1 Recap of the trends in innovative HPC architectures
In D5.5 [1], we covered themost relevant trends in innovative HPC architectures. In particular,
we conducted market analysis and comparison against the major metrics on such
components as CPUs, accelerators, and RAM for all major vendors. Below, we recap themajor
findings.
Among the traditional CPU vendors for HPC, we discussed the state-of-the-art products of
Intel and AMD. In order to reveal trends, the analysis contained comparison of top
microprocessors year 2019 against year 2017 for each vendor. In our study of Intel's CPUs,
we compared two typical x86-64 14nm server processors for scalable performance: Xeon
Gold 6138 with a Sky Lake-SP (LGA 3647) microarchitecture against a more recent Xeon Gold
6248 with a Cascade Lake-SP microarchitecture. Despite significantly higher base core
frequency (2.5GHz against 2.0GHz), Intel Xeon Gold 6248 introduced all benefits of Cascade
Lake relative to Sky Lake microarchitecture such as doubled number of memory channels, 3D
XPoint memory support, advanced vector extensions for Deep Learning Boost, e.g. VNNI
(Vector Neural Network Instructions) logic, as well as mitigations for well-known Intel's
hardware vulnerabilities –Meltdown and Spectre. As a result of all these improvements, SPEC
benchmark results are higher for Cascade Lake processor than Sky Lake. In this deliverable,
we benchmark a testbed with Xeon Platinum 8268 – a contemporary version of Intel's
processor with the Cascade Lake-SP microarchitecture.
In the study of AMD's CPUs, we analysed two x86-64 server microprocessors: AMD Epyc
Naples 7551 with a Zen microarchitecture against AMD Epyc Rome 7742 with a Zen2
microarchitecture. In the SPEC benchmark, AMD Epyc Rome 7742 outperformed not only
AMD Epyc Naples 7551, but also Intel Xeon Gold 6248. AMD Epyc Rome 7742 demonstrated
higher FLOPS performance, higher performance per watt, as well as higher bandwidth
connection to InfiniBand and other fabric and storage adapters (NVMe SSDs, GPU
Accelerators, and FPGAs) thanks to PCIe x16 v4.0. This deliverable reports benchmark results
for a testbed with AMD Epyc Milan – a contemporary AMD processor with Zen3 cores.

https://en.wikipedia.org/wiki/Skylake_(microarchitecture)#Skylake-SP
https://en.wikipedia.org/wiki/Cascade_Lake_(microarchitecture)
https://en.wikipedia.org/wiki/3D_XPoint
https://en.wikipedia.org/wiki/DL_Boost
https://en.wikipedia.org/wiki/3D_XPoint
https://en.wikipedia.org/wiki/Meltdown_(security_vulnerability)
https://en.wikipedia.org/wiki/Zen_2
https://en.wikipedia.org/wiki/Zen_(microarchitecture)
https://en.wikipedia.org/wiki/Zen_3

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 15 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Among the new players on the HPC server market, D5.5 contained the comparisons for the
ARM-based server processors: Kunpeng 916 (Hi1616) with 32x ARM Cortex-A72 cores against
Kunpeng 920 (Hi1620) with 64x TaiShan v110 cores (microarchitecture that implements
ARMv8.2-A). In the SPEC benchmark, due to a higher number of cores, Kunpeng 920
outperformed Intel Xeon Gold 6248, but was almost twice slower than AMD Epyc Rome. On
the other hand, ARM provided much better performance per watt ratio than the other
families of processors. Besides full implementation of ARMv8.2-A and a few memory access
improvements, Kunpeng 920 also featured compression and crypto offload engines. The
latter can be useful for ABMS applications where hash function calls are commonplace.
The review in D5.5 covered such popular accelerator technologies as FPGA, vector co-
processors, and GPGPU. It concluded that GPGPU is the leading accelerator technology in the
HPC domain, as well as themost suitable accelerator technology for GSS applications. In order
to reveal trends in GPGPU, we presented comparison of the top GPU cards of Nvidia (V100
PCIe and V100 SXM2) and AMD (MI50 and MI100) available in the market in 2020. This
comparison demonstrated that AMD MI100 cards can be considered as a strong alternative
for Nvidia V100 GPGPU systems due to a much higher FLOPS rate even though they generally
have a simpler core architecture. As we show later in this text, the new generation of Nvidia
cards – Ampere A100 GPUs – outperform AMD MI100 in both FLOPS rate and core
architecture.
Since many GSS applications are memory- and I/O-bound, we separately included a review of
the state-of-the-art memory technologies in D5.5. Besides overview of trends and leading
solutions for volatile RAMmemory such as DDR5 SDRAM (double-data-rate five synchronous
dynamic random access memory), the review presented non-volatile RAM (NVRAM) solutions
for bridging the performance gap between SDRAM and SSD cards with the focus on products
based on the 3D Xpoint technology – Intel Optane PMem and Intel Optane SSD. We identified
all these technologies as viable candidates for improving the performance of I/O-bound GSS
applications.
2.2 General-purpose CPUs
Table 1 presents a short summary of the processors used in the testbeds studies in this
deliverable. Below we provide more details on the novel features introduced in these CPUs.

Features Intel Xeon(R)
Platinum 8268

AMD EPYC Milan
7763

ARM Hi1620
(Kunpeng 920)

Microarchitecture x86-64,
Cascade Lake

x86-64,
Zen3 (MILAN)

ARMv8.2,
TaiSHan v110

https://en.wikipedia.org/wiki/ARM_Cortex-A72
https://en.wikipedia.org/wiki/HiSilicon#Kunpeng_916_(formerly_Hi1616)
https://en.wikipedia.org/wiki/HiSilicon#Kunpeng_920_(formerly_Hi1620)
https://en.wikipedia.org/wiki/AArch64
https://en.wikipedia.org/wiki/Non-volatile_random-access_memory
https://en.wikipedia.org/wiki/3D_XPoint

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 16 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Features Intel Xeon(R)
Platinum 8268

AMD EPYC Milan
7763

ARM Hi1620
(Kunpeng 920)

Fabrication Technology 14 m 7 nm 7 nm
Release Date 2019 2021 2019
Number of cores 2x 24 2x 64 2x 48
Number of threads 2x 48 2x 128 2x 48
Base Frequency (GHz) 2.90 2.45 2.6
Number of memory
channels

2x 6 2x 8 2x 8

Memory support DDR4-2933 DDR4-3200 DDR4-2933
Memory Bandwidth
(GB/s)

2x 140.8 2x 204.8 2x 187.7

L1 instruction cache (KB
per core)

32 32 64

L1 data cache (KB per
core)

32 32 64

L2 cache (MB per core) 1 0.5 0.5
L3 cache (MB) 2x 35.75 2x 256 2x 48
Advanced Vector
Extension

512-bit AVX-512 256-bit AVX2 128-bit NEON

Processor Interconnect 3x Intel UPI links 4x AMD Infinity
links

3x HiSilicon Hydra
ports

Thermal Design Power
(W)

2x 205 2x 280 2x 158

Input and Output 2x PCIe 3.0 x48 2x PCIe 4.0 x128 2x PCIe 4.0 x40
Table 1: Microprocessors used in the study

2.2.1 Intel Xeon(R) Platinum 8268 (Altair node processor)
Xeon Platinum 8268 is a 64-bit 24-core processor designed for high-performance server use.
It was introduced by Intel in early 2019 and can be found in PSNC’s Altair supercomputer
nodes. Based on the Cascade Lake x86 microarchitecture and manufactured with 14 nm

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 17 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

lithography process this chip operates at 2.9GHz base frequency with a turbo boost frequency
of up to 3.9 GHzwith a TDP of 205W.When it comes to symmetricmultiprocessing, it supports
8-way SMP via 3 Ultra Path Interconnect links and up to 1 TB of hexa-channel DDR4-2933
memory. Unusually this particular model features a larger non-default 35.75 MiB of L3 cache
that would normally be found on a 26-core part.
2.2.2 AMD Epyc Milan (AMD x86)
The AMD MILAN 7763 CPU represents the third generation of EPYC server processors. The
design of this CPU consists of a single central I/O hub (or I/O Die) through which all CPU
components communicate. The CPU uses a collection of 8-core chiplets, called Core Complex
Dies (CCDs), connected to the I/O Die through dedicated high-speed Infinity Fabric links.
Through this die, a given CCD can communicate with other CCDs and the main memory and
external devices connected by the PCIe bus.
This top-of-the-line MILAN CPU includes 8 CCDs. Every CCD consists of 8 cores and 32 MB of
L3 cache. Every core is equipped with an L2 inclusive cache of 512 KB size and an L1-D cache
of 32KB size. The total capacity of the L3 cache depends on the number of CCDs, and can
maximally reach 256 MB for a single 64-core CPU. Each processor also includes the 8-channel
memory controller providing DDR4 memory speeds up to 3200MHz, where each memory
channel supports up to 2 DIMMs.
The CPU design permits simultaneous multithreading (SMT), which results in 128 logical cores
for the 64-core CPU. The architecture of MILAN processors offers full AVX2 support enabling
single-cycle AVX2 calculations. Every core includes two floating-point units built as four pipes
equipped with 2x fadd and 2x Fmul engines. The AMDMILAN 7763 CPU is clocked at the base
frequency of 2.45GHz. The maximum boost for a single core can reach up to 3.5 GHz. There
is no restriction for CPU frequency when using AVX2 instructions, and the clock speed
depends on temperature and voltage requirements regardless of the instructions used.
2.2.3 Huawei Kunpeng 920 (ARM Hi1620)
As mentioned in the Section 2.1, D5.5 contains a high level overview of Huawei Kunpeng 920
processors and the comparison with their predecessor. Thus, we refer the interested reader
to D5.5 for further details on the innovative features introduced in Huawei Kunpeng 920.
2.3 Accelerators
Table 2 provides a summary of the characteristics of GPUs used in the testbeds studied in this
deliverable. Text below describes architectural novelties introduced in these GPUs.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 18 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Features Nvidia A100-SXM4-40GB AMD Instinct MI100
Compute units 128 120
FP32 cores 8,192 7,680
Peak INT8 (TFLOPS) 624 184.6
Peak FP16 (TFLOPS) 312 184.6
Peak FP32 (TFLOPS) 19.5/156 (tensor core) 23.1
Peak FP64 (TFLOPS) 9.7/19.5 (tensor core) 11.5
Bus Interface (GB/s) 64 (PCIe Gen4) and 600

(NVLink)
64 (PCIe Gen4)

Global memory (GB) 40 (HBM2) 32 (HBM2)
L2 cache (MB) 40 8
Shared memory per MP (KB) 48 -
Memory interface 5,120-bit (HBM2) 4,096-bit
Memory bandwidth (GB/s) 1,555 (HBM2) 1,200
Max thermal design power (W) 250 300
Board Form Factor full-height, up to 8 slots full-height, dual slot
Compute APIs CUDA, OpenCL, OpenACC ROCm, OpenCL, OpenACC

Table 2: GPUs used in the study
2.3.1 Nvidia Ampere A100
Architecture-wise Nvidia Ampere A100 GPU is composed of HBM2 memory controllers and
7 GPU processing clusters (GPCs), with 7 or 8 texture processing clusters (TPCs) per GPC and
2 streaming multiprocessors (SMs) per TPC. In total, it gives 128 SMs per full GPU, each with
64 FP32 CUDA Cores per SM and 4 third-generation Tensor Cores per SM [14-16].
The new Ampere SM adds many new capabilities to the features originally introduced in the
Volta and Turing SM architectures. The major improvements include the innovative third-
generation Tensor Core, support of multi-instance GPU (MIG) virtualization for shared GPU
use, larger HBM2 memory and L2 caches, faster multi-node and multi-GPU interconnects, as
well as significant changes in CUDA.
The third-generation Tensor Core enhances operand sharing and improves efficiency, as well
as adds support for new DL and HPC data types together with a new Sparsity feature. The list

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 19 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

of the new and better supported data types includes new TensorFloat-32 (TF32) Tensor Core
operations, new Bfloat16 (BF16) Tensor Core instructions operating at the same throughput
as FP16, IEEE-compliant FP64 processing, Tensor Core acceleration of INT8, INT4, and binary
round out support for DL inferencing. The new types allow to boost performance significantly.
In particular, with the new TF32 operations, Nvidia reports 10x faster processing than V100
FP32 FMA. New Sparsity support enables exploiting a fine-grained structured sparsity in DL
networks. This is achieved through 2:4 sparse matrix definitions that prune every four-entry
vectors to two non-zero values.
In order to facilitate fine-grained workload provisioning for smaller workloads, the third-
generation Tensor Cores implement a new multi-instance GPU (MIG) virtualization feature
which allows the Tensor Core GPU to be securely partitioned into up to 7 separate GPU
Instances for CUDA applications with separate and isolated paths through the entire memory
system. In addition, single root input/output virtualization (SR-IOV) allows to share and
virtualize a single PCIe connection for multiple processes or VMs.
In order to increase number of links per GPU and raise GPU-GPU communication bandwidth,
Ampere GPUs use the new Nvidia NVSwitch and the third-generation of Nvidia high-speed
NVLink interconnect. The latter also implements an improved error-detection and recovery.
For multi-node communication, these GPUs are fully compatible with Nvidia Magnum IO, as
well as Mellanox InfiniBand and Ethernet interconnects. In particular, they support PCIe Gen
4 for fast network interfaces, such as 200 Gbit/s InfiniBand.
A100 cards hold 40MB of L2 cache and 40GB of HBM2memory with a class-leading 1555 GB/s
of memory bandwidth. They support asynchronous copy and hardware-accelerated barriers
in shared memory.
The new version of CUDA for Ampere cards introduced task graphs model for submitting
work. A task graph defines series of operations (i.e., memory copies and kernel launches),
connected by dependencies. It enables define-once and run-repeatedly execution flowwhere
predefined task graph allows the launch of any number of kernels in a single operation.
For more detailed information on the Nvidia Ampere A100 we refer to [14].

2.3.2 AMD Instinct MI100
Deliverable D5.5 provides an overall tabular summary for GPGPU cards like AMD MI50 and
MI100 [1]. In this elaboration we deliver more detailed description of the card AMD MI100
card discussing its improved performance over previous generation MI50.

https://collabora.atosresearch.eu/6.3.1-32/web-apps/apps/documenteditor/main/index_loader.html?_dc=6.3.1-32&lang=en&customer=ONLYOFFICE&frameEditorId=iframeEditor&compact=true&parentOrigin=https://newrepository.atosresearch.eu#orge4d9304

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 20 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

AMD Instinct MI100 is based on next-generation CDNA architecture optimized for computing
operations. In comparison MI50 is on Vega 20 architecture, which is specific for consumer
cards targeting graphics rendering performance. Both accelerators are installed on AMD
cloud testbed, which contains nodes with 8 cards each. We will now compare the two AMD
cards.
Both AMD Instinct cards are fabricated at 7nm FinFET process and draw up to 300 Watts of
power. MI100 features a total of 7680 stream processors operating at 1.5GHz and its FP64
performance peaks at 11.5 TFLOPs. Finally, MI100 card provides 32GB of HBM2 memory
delivering 1.23TB/s of bandwidth. In turn the MI50 peaks at 10 TFLOPs, consists of 3840
stream processors at 1.725GHz, while having 16GB of HBM2 memory peaking at 1TB/s of
bandwidth.
The newer architecture comes with AMD matrix core technology, which optimizes matrix
datatype calculations. Thanks to it, MI100 comes with 7x greater peak FP16 performance
than the MI50 (at 185 TFLOPs compared to 26.5 TFLOPs) [17].
Although it fits into a standard PCIe Gen4 x16 slot, The Instinct MI100 card is using Infinity
Fabric Link. It is an additional interface for GPU-to-GPU communication much like Nvidia’s
NVLink. This provides more performance than PCIe Gen4 interface and is designed to link up
to four GPUs in a virtual GPU called "hive". MI100 GPUs can be configured with up to two
fully-connected quad GPU hives, each providing up to 552 GB/s of P2P I/O bandwidth for fast
data sharing. MI50s can also be connected with Infinity Fabric, but it can only be hooked into
a ring topology, which increases the latency between devices [18].
Set side by side with Nvidia's accelerators, AMD offerings provide roughly similar
performance to power efficiency ratio. Comparing to Volta V100, the Instinct MI100 offers a
19.5% uplift in FP64 and an 18.5% uplift in FP32 performance. However, in FP16 performance,
the newer and more power-demanding Nvidia Ampere A100 has a 69% advantage over the
Instinct MI100 [19].
2.4 Testbed configurations
Table 3 summarizes information about hardware and software configuration of the testbeds
used to evaluate modern general-purpose CPUs. In this study, we evaluate state-of-the-art
CPUs on 3 testbeds, each corresponding to the CPU described in subsection 2.2.

Feature intel8268 amd7763 armHi1620
Node merchant
name

HUAWEI CH121 V5 GIGABYTE H262-
Z62-00

Atlas 800 (Model:
3000)

CPU Intel Xeon(R) AMD EPYC Milan ARM Hi1620

https://support.huawei.com/enterprise/en/doc/EDOC1000183581/55b73ea4/technical-specifications
https://www.gigabyte.com/de/Enterprise/High-Density-Server/H262-Z62-rev-100
https://www.gigabyte.com/de/Enterprise/High-Density-Server/H262-Z62-rev-100
https://e.huawei.com/en/products/cloud-computing-dc/atlas/atlas-800-inference-3000
https://e.huawei.com/en/products/cloud-computing-dc/atlas/atlas-800-inference-3000
https://en.wikichip.org/wiki/intel/xeon_platinum/8268
https://en.wikichip.org/wiki/amd/cores/milan
https://en.wikichip.org/wiki/hisilicon/microarchitectures/taishan_v110

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 21 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Feature intel8268 amd7763 armHi1620
Platinum 8268 (Kunpeng 920)

RAM 192/384GB 512GB (8-Channel
RDIMM/LRDIMM

DDR4)
256 GB

SSD/HDD 2 x SAS 1.6 TB (OS
and HOME discs)
2 x SSD 1.4 TB
(scratch discs)

240G (Intel
SSDSC2KB24)

2 x SAS 1.6 TB (OS
and HOME discs)
2 x SSD 1.4 TB
(scratch discs)

Interconnect Infiniband EDR HDR200 IB
Mellanox MT28908

[ConnectX-6]
Infiniband EDR

OS CentOS 7 (Core) CentOS 8.3.2011 Ubuntu 18.04.5 LTS
(Bionic Beaver)

FS GPFS BeeGFS 7.2.1 GPFS
MPI OpenMPI 4.1.1 OpenMPI 4.1.1 OpenMPI 3.3a2
C/C++/Fortran GCC 9.3.0 GCC 9.3.0 GCC 7.5.0
Python Python 3.9.2 Python 3.7.9 Python 3.7.10
Access PSNC, Eagle:altair AMD Milan cloud PSNC, SSH tunnel,

proxy Eagle
Table 3: Hardware and native software configuration of the CPU testbeds used in the study

intel8268 testbed. In order to study the performance of Intel Xeon Platinum 8268 CPUs, we
use nodes of PSNC’s Altair clusters composed of HUAWEI CH121 V5 servers connected via the
InfiniBand EDR interconnect. We refer to these nodes as intel8268 testbeds. Every intel8268
testbed offers two 24-core Cascade Lake CPUs and 192 or 384 GiB DDR4-2933 of main
memory. This testbed come with CentOS 7.9 operating system and Lustre 2.12 file system.
intel8268 testbeds can be accessed from the altair queue of Eagle.
amd7443 testbed. We study the performance of AMD EPYCMilan 7763 processors by utilizing
the resources of the GIGABYTE H262-Z62-00 server of the external AMD cloud. We refer to it
as amd7763 testbed. Besides two top-of-the-line 64-core CPUs, this testbed is equipped with
512 GiB DDR4-3200 of main memory and configured with NPS4 (Numa Per Secocet) setup
exposing 2x4 NUMA domains per a single node. The underlined testbed comes with CentOS
8.3 operating system, BeeGFS 7.2.1 file system, and offers the InfiniBand HDR200
interconnect.

https://en.wikichip.org/wiki/intel/xeon_platinum/8268
https://ark.intel.com/content/www/us/en/ark/products/66250/intel-ssd-520-series-240gb-2-5in-sata-6gbs-25nm-mlc.html
https://wiki.man.poznan.pl/hpc/index.php?title=Eagle
https://www.psnc.pl/
https://www.psnc.pl/
https://wiki.man.poznan.pl/hpc/index.php?title=Eagle

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 22 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

armHi1620 testbed. An Atlas 800 Model 3000 server hosted at PSNC is used to study the
performance of ARM Hi1620 (Kunpeng 920-4826) processors. We refer to this server as
armHi1620 testbed. A single node offers two 24-core ARMv8.2-based CPUs, 256GiB of DDR4-
2933, and two 1.2TB 2,5" SAS Seagate HDD. This testbed is connected through Quad-Port
(2x10GbE + 2x1GbE) card, and comes with Ubuntu 18.04 operating system.
Respectively, Table 4 summarizes information about hardware and software configuration of
the 2 GPU testbeds used in the study.

nvA100 amdMi100
Node merchant
name

HPE Apollo 6500 ProLiant Gen10
Plus XL675d

Supermicro AS-4124GS-TNR

GPU 8 x Nvidia A100 SXM4 40GB PCIe 8 x AMD Instinct MI100 32 GB
PCIe

CPU 2 x AMD EPYC 7702 Rome 2 x AMD EPYC 7742 Rome
RAM 1TB (8 x 128GB LRDIMM@ 3200

MT/s, HPE DDR4)
512GB (16x 32GB Samsung

3200 MT/s, DDR4)
SSD/HDD 14TB + 2 x 1.92TB (NVMe PCIe

KCD6XLUL1T92)
1TB NVMe PCIe Samsung

SM981/PM981
Interconnect HDR200 IB Mellanox MT28908

[ConnectX-6]
HDR200 IB Mellanox MT28908

[ConnectX-6]
OS CentOS 8.2.2004 Ubuntu 19.04
FS Lustre 2.12.6ddn43 ext4
GPGPU API CUDA 11.4.0 AMD ROCm v4.5
MPI OpenMPI 4.1.1 MPICH version 3.3a2
C/C++/Fortran GCC 9.3.0 GCC 7.5.0
Python Python 3.8.3 Python 3.6.9
Access HLRS, Hawk:rome-ai AMD Mi100 cloud

Table 4: Hardware and native software configuration of the GPU testbeds used in the study
nvA100 testbed. In order to study the performance of Nvidia Ampere A100 solution, we use
the GPU accelerated nodes of HLRS’ Hawk clusters, which are composed of HPE Apollo 6500
Gen10 Plus XL675d servers connected via the Dual Rail InfiniBand HDR200 interconnect
[20,21]. For the sake of brevity, we refer to these HPE Apollo 6500 Gen10 Plus XL675d servers
as nvA100 testbeds. nvA100 testbeds can be accessed from the rome-ai queue of Hawk.
Each nvA100 testbed has 8 Nvidia Ampere A100 SXM4 40GB PCIe cards each. Besides Nvidia

https://support.hpe.com/hpesc/public/docDisplay?docId=a00109734en_us&docLocale=en_US
https://support.hpe.com/hpesc/public/docDisplay?docId=a00109734en_us&docLocale=en_US
https://www.nvidia.com/en-us/data-center/a100/
https://www.amd.com/en/products/server-accelerators/instinct-mi100
https://en.wikichip.org/wiki/amd/cores/rome
https://en.wikichip.org/wiki/amd/cores/rome
https://en.wikichip.org/wiki/amd/cores/rome
https://business.kioxia.com/nl-nl/ssd/data-center-ssd/cd6-r.html
https://www.hlrs.de/systems/hpe-apollo-hawk/
https://www.hlrs.de/

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 23 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Ampere A100 GPUs, nvA100 testbeds include 2 64-core AMD EPYC 7702 Rome CPUs, 1TB of
HPE DDR4 SmartMemory, 14TB of DDN EXAScaler storage with IME (Infinite Memory Engine)
burst buffer, and 2 NVMe PCIe SSD cards with 1.92TB each. Our nvA100 testbeds come with
CentOS 8.2 operating system and Lustre 2.12 file system. The default software environment
includes GCC 9.3.0 compilers, Python 3.8.3 interpreter, and CUDA 11.4.0 for writing GPGPU
applications.
amdMi100 testbed. To examine the performance of AMD Instinct MI100 GPUs, we use a
system of external AMD Accelerator Cloud, which is composed of Supermicro 4124GS-TNR
servers connected via the InfiniBand HDR200 interconnect. Every server includes two 2x AMD
EPYC 7742 Rome, 512 GiB of DDR4-3200 main memory, 1TB NVMe PCIe SSD, and offers up to
8x AMD Instinct MI100 GPUs. We refer to every server as amdMi100 testbed. The amdMi100
testbeds come with Ubuntu 19.04 operating system.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 24 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

3 HiDALGO Benchmark Suite
In this chapter, we present the structure of the HiDALGO benchmark suite. We start by
discussing the computationally expensive parts in the simulation data flows of pilots. Next,
we describe the purpose and implementation for each of these kernels. Afterwards, we
present the implementation of the benchmark itself. Namely, we describe the methodology
and tools for collecting measurements and reporting results, as well as the scripts that
automate the process of deployment and running the benchmark. We finish this chapter by
comparing the HiDALGO benchmark suite with other benchmarks suitable for GSS on HPC,
such as SPEC and CoeGSS benchmark [22,23].
3.1 Structure of the HiDALGO Benchmark Suite
The HiDALGO benchmark suite is composed of three components: kernels to benchmark,
automation scripts, and codes that implement benchmarking methodology. We host codes
of the HiDALGO benchmark suite at GitLab repository:

https://gitlab.com/eu_hidalgo/hidalgo_bench_suite.
The core component of the benchmark is a set of kernels, which reflect the computationally
expensive parts in the simulation data flows of our pilots. All kernels are put in the subfolders
of the folder tests.
In the HiDALGO benchmark, we put a strong emphasis on automating deployment of the
benchmark, running benchmark, and collecting metrics for all kernels and testbeds. The main
automation scripts are implemented in Ansible and Spack and can be found in the folderansible.
Last but not least, the HiDALGO benchmark relies on the metrics collected by three tools –time, perf, and mpiP. In the CPU benchmark, we collect various metrics on 16 cores and
on a full testbed for each kernel. This allows to draw initial conclusions about the overall
performance of the testbeds, as well as about the performance of the cores. In GPU
benchmarks, we fully utilize a single GPU card. In order to harmonize and facilitate collection
of the metrics and analysis of the benchmarking results, we develop a set of scripts in Python
and bash. These scripts are located in the folder tests/common.
In the next sections, we cover these three components of the benchmark in depth. The last
section is devoted to comparing our benchmark with the existing alternatives.

https://gitlab.com/eu_hidalgo/hidalgo_bench_suite/

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 25 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

3.2 Kernels of the HiDALGO Benchmark Suite

3.2.1 Hotspots in the simulation data flows of pilots
In Chapter 2 of D5.5 [1], we covered simulation data flows of pilots. Namely, we discussed an
overall idea on how applications spread across processes and communicate with each other,
feed models with data, synchronize statuses and write results down. Data flows of all pilots
contain simulation components, as well as pre- and post-processing components. In this
section, we identify compute-intensive parts of the data flows, which provide the baseline
for defining kernels of the HiDALGO benchmark suite discussed in the next section.
In order to forecast movements and destinations of people displaced by conflict, migration
use case follows an agent-based modelling approach. The overall process includes several
phases. In the first phase, the data from all sources is collected, cleaned up, and prepared for
the simulation runs. Most of the computational efforts are spent on the GIS pre-processing
step known as location graph extraction. In location graph extraction, the target is to produce
a reduced form of the route network, called location graph, from the raw input
OpenStreetMap (OSM) data. In the second phase, we feed pre-processed data to the
ensemble run of parallel Agent-Based Social Simulations (ABSS) performed by ABSS
framework called Flee. Flee runs agent-based simulations and reports aggregate agent totals.
In the last phase, outputs of Flee are post-processed by the VVUQ tools. Compared to the
fists two phases, the latter phase does not require significant computational resources.
The data flow of the UAP use case is driven by the traffic and CFD simulations. Similarly to the
migration use case, UAP requires GIS pre-processing. Nevertheless, the scale of the GIS data
is relatively small compared to themigration pilot. In the simulation phase, the CFD simulation
takes significantly more computation time compared to the traffic simulation. In order to
benefit from different computing platforms, SNA pilot experiments with several CFD
simulation tools including OpenFOAM, Fluids-GPGPU, and RapidCFD-GPGPU. CFD simulations
produce a large amount of outputs for further post-processing, where principal component
analysis (PCA) for mode reduction is one of the most expensive post-processing routines. PCA
implementation is based on the singular value decomposition (SVD). There are many
implementations of SVD for different hardware platforms. In our studies, we rely on the
implementations from the TensorFlow and Magma libraries which allow to compute SVD
with different GPU accelerators.
The data flow of the SNA use case also includes several computationally expensive tasks such
as approximation of the eigenvalue histogram, as well as simulation of the message spread in

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 26 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

social media. The first task is implemented in the KPM tool, while the second task is carried
out by the SN-Simulator tool.
Based on the analysis of the data flows of the HiDALGO pilots, we defined 5 CPU and 3 GPU
kernels for the HiDALGO benchmark suite. These are summarized in Table 5 and Table 6.

Kernel Domain Language Pilot Purpose
Flee Simulation/ABSS Python MIG Simulation of human

migration
OpenFOAM Simulation/CFD C++ UAP CFD simulation of UAP
SNSimulatior Simulation/ABSS Python SNA Simulation of message

spread in social media
LGE Pre-process/GIS C++ MIG Location graph extraction
KPM Pre-process/LA Python SNA Kernel-Polynomial-Method

for approximation of the
eigenvalue histogram

Table 5: List of the CPU kernels in the HiDALGO benchmark suite

Kernel Domain Language Pilot Purpose
Fluids-GPGPU Simulation/CFD C++ UAP CFD simulation for UAP
RapidCFD-GPGPU Simulation/CFD C++

(CUDA)
UAP CFD simulation for UAP

SVD Post-process/LA C UAP Singular value
decomposition

Table 6: List of the GPU kernels in the HiDALGO benchmark suite

3.2.2 Simulation components of the benchmark

3.2.2.1 Migration use case
Flee kernel. Flee is an ABSS framework developed by BUL, which performs the agent-based
social simulations for the Migration use case. We focus on P-Flee, the parallel algorithm of

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 27 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

the framework. The Flee code calculates the movement of displaced agents on a daily basis
with a total number of simulation days D. The simulation starts with an initial number of
agents N, while at every new timestep, d agents can be added. The environment is modelled
by an attributedweighted graph of routes between locations, i.e., the location graph, denoted
as G. Flee implements two parallelization schemes, one that replicates the location graph and
distributes agents evenly among processes (agent-parallel, AP), and another (agent-space-
parallel, ASP) that distributes both locations and agents among processes, with each process
being responsible for the update of its “local” locations.
In our benchmark, the Flee kernel takes the following inputs:

 Flee parallelization mode: We focus on the ASP version of the Flee algorithm, as prior
evaluation has shown that it is effective. It also allows us to evaluate the performance
of Flee on a single node with a smaller location graph as input.

 Location graphG: We use a synthetic location graph of 100 nodes with a vertex degree
of 4, denoted as 10-10-4.

 Number of agents N, d: We perform a simulation with 2 million initial agents (N),
adding 10 thousand agents (d) per time step.

 Simulation days D: We perform a simulation with 10 time steps, equivalent to 10 days.
3.2.2.2 Urban Air Pollution use case
The most computationally intensive part of the UAP Pilot is the CFD module. The task here is
to compute air flow from weather data and have it interacted with traffic emitted pollution.
The city model, coupled weather and traffic data is accumulated, converted to a format
readable by the implementing software. After simulation, the appropriate physical state data
is stored for post processing. On novel CPU architectures, the original source code version
v20.12 of OpenFOAM is recompiled, which is currently used in production for CFD
simulations. For GPU architectures, a new, internally developed GPGPU code named "fluid
solver" is introduced and tested, which is specifically aimed for GPU usage. A GPU variant of
OpenFOAM named RapidCFD is also tested to assess the porting possibilities of the
OpenFOAM version to GPUs.
OpenFOAM kernel. The OpenFOAM kernel uses the open source CFD toolset OpenFOAM
with the community versions 20.06 or 20.12. The software has been extended with modules
to handle the special data formats of the UAP Pilot. Also, most used simulation tools are
instrumented and tweaked for our use case.
The module runs in a 3-step way. First, UAP format data is converted to OpenFOAM format:
the 3D simulation domain and time dependent atmospheric and traffic data is converted to

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 28 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

OpenFOAM polyMesh and dict formats to be read by the simulation tools afterward.
Next, domain decomposition is issued for as many number of domains, as the number of
processors used. The third part will be run in parallel, which includes renumbering the mesh
with renumberMesh to get physically close cells closer in index, too. The physical simulation
is started with calculating a steady state with simpleFoam for the starting time: boundary
conditions and emission rates are fixed. Next, a changeDictionary tool is executed to
set up transient parameters within the simulation data. Finally, the actual time dependent
simulation is done with pimpleFoam.
The simulation expects the following inputs: the 3D model of the simulation domain in
Fluent .msh format and the wind profiles for the boundary condition of the flow field
in .wind format. At least one pollutant is recommended as traffic emission in UAP table
format, although additional point sources can be added in the pointSources file. Custom
background emission profile can be set with the UAP table format. Sampling locations are set
in the probeLocationsFull file. Further simulation parameters can be configured in the in theuap_foam.cfg file.
Output format is configured in the uap_foam.cfg file, that include .ensight, .vtk
and .csv formats for 3D outputs. Probe location values are saved in ascii format, while
configurable cutting plane outputs are in vtp format. Outputs may include flow field velocity
as vector, pressure, and pollutant concentration for the configured pollutants.
Fluids kernel. fluid_solver is a 3 dimensional computational fluid dynamics solver,
based on a cell-based finite volume method, that can simulate complex flow problems. It is
compiled as C++, but mostly follows a C99 coding style (with the exception of operator
overloads) in order to retain a sane ABI (Application Binary Interface). It is first and foremost
a command line tool which, given a boundary condition, configuration, and tetrahedral mesh,
can simulate the problem and write result as raw data (state matrices), probe data (useful for
acoustic analysis for instance) or visualization ready files (.vtk format for Visualization
Toolkit). It is a finite-volume, cell-based CFD solver that works on tetrahedral meshes. It
currently supports a FOM (full-order model) and ROM (reduced-order model) mode which
runs orders of magnitudes faster (x1000, x2000 faster). It currently solves the compressible
Navier-Stokes equations, mainly using the Explicit-Euler method. It also has an emission
module, where concentration can be computed for an arbitrary amount of substances.
In order to run the solver in the Reduced-Order-Model (ROM) mode, a training step is
required. During this training step, multiple Full-Order-Models (FOMs) are computed, the
flow states are placed into a matrix (rows correspond to cell indices, and columns correspond
to timesteps), and the SVD (Singular Values Decomposition) of those flow values are
computed. Using the result of that SVD, we use a POD in order to get reduced-ordermodelling
capabilities. The precision of this modelling can be adjusted dynamically, based on the

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 29 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

number of considered singular values (corresponding to the dimension of the reduced-order
model).
There are currently two versions. A multicore CPU version that runs on a single node via
OpenMP, and a CUDA version that runs on Nvidia GPUs. The CUDA version only relies on
cuBLAS, everything else is written as simple CUDA kernels Most of the computations in our
solver involve iterating over a huge number of vertices/faces/cells (approximately 10 million),
where we compute the flux value for each face/cell, repeatedly executing the same routines
over and over for each of them. This is a perfect fit for us, for our GPU version, since that is
by definition, what GPUs are best at. Thus, our most performance/resource intensive CUDA
kernels in fluid_solver, are the 3 CUDA kernels that handle flux computations; for the
vertices, faces, and cells.
For benchmarking purposes, we always consider a full-day (24 hours). If it would take too
much time to simulate, we run the solver for less time, and estimate the results for a full-day
instead. It is only needed to do this for the FOMs on CPUs, since the ROMs run extremely fast,
and the FOMs run decently fast enough on GPU architectures.
There are many parameters needed in order to run fluid_solver, many of which we
keep constant while benchmarking. We list below the values that have the most significant
impact while benchmarking:

 CFL: Courant-Friedrichs-Lewy number for the FOM. Before the ROM is started, there
is a pre-simulation FOM phase, of which the duration is given by the parametersteady_state_time. Keeping this value equal to 0.85 is recommended.

 ROM_CFL: Courant-Friedrichs-Lewy number for the ROM, which can be in the order
of thousands (1000, 2000), due to the overall stability of the reduced-order model.

 reduced_r : dimension of the ROM, which can go as low as 10. It determines the
precision of the reduced model.

 vtk_save_rate: Save rate for .vtk files.
 state_save_rate: Number of simulation states to save. These are saved to a

custom binary format that can later be used to compute wind-field and other
statistics.

All these values determine a compromise between speed and accuracy, thus they are the
values we are actually interested in.
During our benchmarks, we kept reduced_r constant, while modifying ROM_CFL.
Modifying the ROM_CFL greatly improves the runtime of our solver, since it directly
influences the required amount of time needed to simulate a set amount of time. If the CFL

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 30 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

value is twice as high, we roughly expect the solver to simulate twice as fast. Of course, this
might not perfectly be the case, but in our experience, it roughly scales as such. Precision
barely seems to degrade for higher CFL values (sometimes, the opposite being the case:
precision might even be better), up to a certain threshold (ex. 2500, 3000).
RapidCFD kernel. One of the ways to use GPUs for the UAP CFD module is to implement the
OpenFOAM functionality using one of the OpenFOAM variants that use GPU. Three of these
variants were considered: using PETSc solver via the PETSc4Foam module, using the GPU
solvers in foam-extend or using RapidCFD, a variant that is built for GPUs directly. The first
two variants only use GPUs for solving the discretized system of linear equations, so data
must be transferred from and to the GPU for every system solved. In RapidCFD, however, all
calculations are done on the GPU, so RapidCFD is chosen to be tested to assess, if it is
worthwhile to port UAP to.
In the test, the solver simpleFoam is tested and run in the well-known test case motorBike,
that is available in all OpenFOAM variants and versions. As RapidCFD only implements solvers,
all other utilities, like domain decomposition, mesh generation or mesh import utilities are
used fromOpenFOAM version 2.3.1, which is compatible with RapidCFD on the data structure
level. For the benchmarks, the mesh generation routine of the original tutorial was modified
to get various size meshes. These were generated separately, converted to Fluent .msh
format, and were reread with fluent3DMeshToFoam at the start of the simulation.
Afterwards, the potentialFoam and simpleFoam solvers were executed from the RapidCFD
variant, which executed the simulation on the GPU.
As it was used only for test purposes, only the mesh file was considered an input, and the
simulation state after the final iteration was considered output.
3.2.2.3 Social Network use case
SNSimulator kernel. At the heart of the Social Network pilot lies the so-called SN-Simulator,
which has the task of simulating the spread and flow of messages in some given input
network. On a high level, the SN-Simulator works as follows. First, it needs to be supplied with
a set of input files that contain the network structure and some additional information about
the dissemination behaviour of the messages (further description follows below). Next,
multiple messages are initiated in the network and for each such message the SN-Simulator
determines which neighbouring nodes need to adopt this message and aid in the spread of
this message (i.e. retweet the message in the context of twitter). Finally, some metrics about
this simulation process, for example the average number of retweets, are calculated and
stored. The goal is for this simulation process is to closely mimic the message-spreading
behaviour of real-word social networks.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 31 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Throughout our benchmarks we will focus on determining the efficiency of the second task,
the simulation of the message spread itself. As all of the SN-Simulator, it is written completely
in Python and relies on the python packages numpy, scipy and pandas. At the core of this
simulation lies the function edge_sample which is invoked each time a tweet/message
arrives at a node in the network (in the following we will use the terms tweet and message
interchangeably). This function is called each time a tweet arrives at a user in the network
and is used to determine which neighbouring users in the network will retweet this tweet,
allowing it to spread further through the network. Recently we made a significant
improvement to this hotspot by using the JIT compiler of the package numba in order to
increase its performance (see Section 5.3 of D3.5 [13] for a detailed description and analysis).
In order to simulate the spread of messages, multiple inputs must be provided. Below, we list
all the required input parameters and datasets that were used as part of the benchmark:

 Graph: A network, modelled as a graph, must be provided in either .metis or .npz
format. Used as network in which the flow of messages is simulated.

 Simulation Features: A list of tweets. For each tweet a so-called feature class is
specified. Each feature class describes certain tweets, for example, there is a feature
class for tweets that contain a link and originate from a verified twitter user.

 Sources and Samples: Two parameters which determine the amount of tweets that
are simulated. For each feature class (in our data-set we usually have 100-200 such
classes), we simulate sample tweets per source.

With sources and samples we can control the overall amount of work performed by the
simulation. In our experiments we fix these values to 400 and 1000, respectively. As input
graph and tweets we use data that we crawled from twitter. We consider three different
topics, each consists of a set of tweets about a certain topic. Additionally, each data-set
includes a follower-followee relationship graph of twitter users talking about this topic.

 neos: A smaller data-set, which consists of roughly 4,500 tweets about the austrian
neos political party. It was acquired during the 2019 austrian elections.

 fpoe: A larger data-set, which was acquired at the same time as neos. However, in this
case it consists of approximately 19,000 tweets about the FPÖ political party.

 covid19: A large data-set, which consists of roughly 375,000 tweets about the covid19
social distancing regulations. It was acquired at the beginning of 2020.

These data-sets can be found on the Hidalgo CKAN. The input graphs can be found in
https://ckan.hidalgo-project.eu/dataset/metis-outer-graphs and the link to the
corresponding simulation features is https://ckan.hidalgo-project.eu/dataset/simulation-
features-version-2.

https://ckan.hidalgo-project.eu/dataset/metis-outer-graphs
https://ckan.hidalgo-project.eu/dataset/simulation-features-version-2
https://ckan.hidalgo-project.eu/dataset/simulation-features-version-2

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 32 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

The simulation outputs a .csv file, which contains metrics for each feature class of tweets.
It lists mean_retweets, the average amount of times a tweet was retweeted, andretweet_probability, the probability that a tweet of some user was retweeted at least
once by one of the user's followers. Additionally, our simulation also outputs an error metrics:
for each feature class the deviation in mean_retweets and retweet_probability
from the corresponding values of the ground-truth data is specified. This ground-truth
information can be calculated from the simulation features input file which we described
above.
3.2.3 Pre- and post-processing components of the benchmark
3.2.3.1 Migration use case
LGE kernel. Automated location graph extraction (LGE) is themost computationally expensive
part in the pre-processing phase of the migration and epidemiology use cases. The algorithm
for location graph extraction consists of two steps – computing distance matrix and triangular
pruning [24].
In our benchmark, we compute distance matrix by utilizing Table Service of the Open Source
Routing Machine (OSRM). This service calculates pairwise distances between locations of
interest via state-of-the-art batched shortest path algorithms for routing – multilevel
Dijkstra's (MLD) and contraction hierarchies (CH) – in a time complexity of 𝒪((|𝐸G|+𝐿Glog𝐿G)𝐿), where 𝐿 denotes the number of locations, while 𝐸G and 𝐿G correspond to the
number of edges and vertices in the original route network. Both algorithms consist of pre-
processing and query phases. The pre-processing phase attempts to annotate and simplify
the complicated route network in order to drastically reduce the duration of further shortest-
path and batched shortest-path queries. MLD belongs to the family of separator-based
shortest-path techniques. Conceptually, it differs from the celebrated customizable route
planning (CRP) algorithm only by the hierarchical partitioning approach used in the pre-
processing phase: canonical CRP applies patented graph partitioning with natural cuts
(PUNCH) approach, while MLD opts for inertial flow approach. Contraction hierarchies is a
classic hierarchical shortest-path algorithm, widely discussed in the literature. In our
benchmark, the distancematrix is calculated using the contraction hierarchies (CH) algorithm.
Pre-processing phase of the CH algorithm consists of two stages – extraction of the inputs for
routing with osrm-extract utility and contraction of the inputs with osrm-contract
utility. osrm-contract utility produces OSRM-file which is further used by OSRM library
to compute distance matrix.
As soon as the OSRM-file is ready, we use it to compute distance matrix and apply triangular
pruning to this matrix for obtaining resulting network. Triangular pruning implements a multi-

https://en.wikipedia.org/wiki/Open_Source_Routing_Machine
https://en.wikipedia.org/wiki/Contraction_hierarchies

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 33 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

threaded version of the route pruning algorithm for undirected graphs described in [24], as
well as in D6.5 [7]. This algorithm has 𝒪(𝐿3) complexity. The codes of the location graph
extraction routine are available from the folder tests/lge/src. In our benchmark, we
compute distance matrix via the direct C++ interface of the core OSRM library instead of the
default REST API to access its services. Our tests rely on OSRM version 5.24.
As a result, the whole process of obtaining location graph utilizes three application which
correspond to three different tasks:

 osrm-extract for extracting route network for the given network connectivity
profile (in this benchmark we use car.lua profile from the default example list of
the OSRM profiles),

 osrm-contract for annotating and simplifying the extracted route network
according to the CH algorithm,

 lge-extract for extracting location graph from the simplified route network.
All three applications solve relatively independent tasks. In order to reflect that, we
introduced three separate subkernels for these steps into the benchmark. Moreover, in our
benchmark, we measure separately the elapsed time for computing distance matrix and for
triangular pruning. Note that in contrast to location graph extraction (lge-extract), pre-
processing phase (osrm-extract and osrm-contract) should be normally executed
once per geo-region, so that pre-processed files can be reused for producing new location
graphs on the same geo-region.
LGE kernel requires two types of inputs: OSMmaps and the list of location. These inputs come
from the folder data. They are organized in the separate subfolders for each of the tested
geographic region (see Table 7). We deliberately excluded Europe and Asia from the
benchmark due to the long-time of contraction for these continents. Each subfolder contains
file map.osm.pbf with the OSM map and CSV file location.csv with the list of
locations.

Region Location tags Number oflocations Map file
South Sudan(conflict) city, camps 51 africa/south-sudan-latest.osm.pbf
South Sudan city, camps 1810 africa/south-sudan-latest.osm.pbf
Germany city, town, village 40204 europe/germany-latest.osm.pbf
Ukraine city, town, village 26903 europe/ukraine-latest.osm.pbf
Africa city, town 9807 africa-latest.osm.pbf

https://github.com/Project-OSRM/osrm-backend
https://download.geofabrik.de/africa/south-sudan-latest.osm.pbf
https://download.geofabrik.de/africa/south-sudan-latest.osm.pbf
https://download.geofabrik.de/europe/germany-latest.osm.pbf
https://download.geofabrik.de/europe/ukraine-latest.osm.pbf
https://download.geofabrik.de/africa-latest.osm.pbf

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 34 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Region Location tags Number oflocations Map file
Antarctica city, town 4 antarctica-latest.osm.pbf
Australia &Oceania city, town 1693 australia-oceania-latest.osm.pbf
Central America city, town 1948 central-america-latest.osm.pbf
South America city, town 8591 south-america-latest.osm.pbf
North America city, town 9951 north-america-latest.osm.pbf

Table 7: Inputs for the LGE kernel
Files location.csv are directly available at data. Information of the location.csv
files corresponds to the settlements from the OSM maps tagged with place equal to city,
town, or village. These files contain 3 columns: OSM ID of the settlements, as well as their
latitude and longitude. Preparation of these files was automated by running the following
steps:

 reduce the full input OSM map by extracting information about settlements to the
smaller OSM file using osmosis:
export GEO_REGION=africa/south-sudanosmosis –read-pbf data/$GEO_REGION/map.osm.pbf \–tf accept-nodes place=city,town,village,hamlet \–tf reject-relations –tf reject-ways –lp \–write-xml places.osm

 convert the reduced OSM file to the location.csv with the Python scriptbin/osm2locations_csv.py.
Alternatively, one could use osmctools to replace osmosis. Nevertheless, our experience
shows that osmctools extracts more redundant information compared to osmosis.
Before running benchmark kernels, files map.osm.pbf for the target regions should be
downloaded from https://download.geofabrik.de by running the scriptbin/fetch_osm.sh. Parameters of the maps are summarized in Table 8 .

Region Size Nodes Ways Relations Restrictions
South Sudan 97MB 23203258 2129495 16 3
Germany 3.76GB 354371881 57866890 138394 126519
Ukraine 642MB 86802157 10650703 14613 19466
Africa 4.83GB 898583514 104069873 11954 18813

https://download.geofabrik.de/antarctica-latest.osm.pbf
https://download.geofabrik.de/australia-oceania-latest.osm.pbf
https://download.geofabrik.de/central-america-latest.osm.pbf
https://download.geofabrik.de/south-america-latest.osm.pbf
https://download.geofabrik.de/north-america-latest.osm.pbf
https://github.com/ramunasd/osmctools
https://github.com/ramunasd/osmctools
https://download.geofabrik.de/

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 35 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Region Size Nodes Ways Relations Restrictions
Antarctica 31MB 5068020 140385 0 0
Australia & Oceania 929MB 137625485 10174012 9204 38376
Central America 483MB 70910074 10548086 1817 8609
South America 2.62GB 425337345 32438176 23937 146476
North America 10.91GB 1457364460 127856913 108879 395706

Table 8: Parameters of the input maps for the LGE kernel
Most of the outputs are produced by the application osrm-extract, which generates 22
separate files with the information necessary for routing (such as names, edges, geometry
maneuvers, restrictions, turns, etc). Based on these files, osrm-contract produces OSRM
file with annotated and simplified route network. lge-extract gets OSRM file and the list
of locations as input. It outputs the location graph.
3.2.3.2 Urban Air Pollution use case
SVD kernel studies the performance of the singular value decomposition (SVD). In our studies,
we rely on the SVD implementations from the Magma library which computes SVD in hybrid
CPU+GPU mode, as well as from the TensorFlow framework which also allows to utilize GPU
accelerators. Respectively, we define two subkernels TensorFlow and Magma. The
TensorFlow subkernel is implemented in Python. In order to compute SVD with TensorFlow,
we call the function linalg.svd(). The Magma subkernel is implemented in pure C. It
uses the function magma_dgesvd() to compute SVD for double precision floating point
matrix.
In both cases, we feed the functions with randomly generated square matrices of various
sizes and compute all their singular values without storing matrices U and V. In TensorFlow
subkernel, we generate the input matrix with the function random.uniform() from the
core TensorFlow library, while, in Magma subkernel, we use the function rand() fromstdlib.h.
3.2.3.3 Social Network use case
The main task of the SNA pilot is the simulation of message flow in given networks. This
requires the input of a social network in form of a graph, which is either (i) sampled from real
data (e.g. the twitter relationship graphs we use in the benchmarks of Section 3.2.3), or (ii)
synthetically generated. In case the second method is desired it is important to establish that
the generated synthetic networks also possess properties of real world social networks.
Various metrics can be used for this comparison, for example, edge degree distribution or

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 36 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

clustering coefficient. An especially powerful but computationally demanding metric is the
eigenvalue spectrum of the graph Laplacian.
KPM Eigenvalue kernel approximates the eigenvalue spectrum of the normalized Laplacian
matrix of a given graph. More precisely, it computes an approximation of the histogram of
eigenvalues with the so-called Kernel-Polynomial-Method (KPM) [25]. In essence, this
approach allows the calculation of the aforementioned histogram via a large number of
matrix-vector multiplications, where the matrix is the graph Laplacian and the vector is
randomly generated.
The application is written in Python and relies on the numpy and scipy. Most notably we
rely on the sparse matrix-vector multiplication algorithms supplied by scipy.
Besides the input graph of which the eigenvalue histogram should be computed, three
additional parameters that determine the accuracy of the computed histogram need to be
specified:
1 Graph: The input graph. Given either in *.metis format or in numpy's *.npz format.

Upon executing the application with a *.metis graph for the first time, a *.npz file is
generated which makes future reading of the input more efficient. For the benchmarks
of this section, we relied on the friendship relationship graph of the pokec social network
(see https://snap.stanford.edu/data/). It consists of roughly 1M nodes. As concrete input
we used a sub-graph of size 50,000 of this graph which was extracted via breath-first
search and can be found on the Hidalgo CKAN (https://ckan.hidalgo-
project.eu/dataset/pokec-relationship-graphs).

2 Intervals: The number of histogram bins that need to be computed. The computational
effort increases linearly with increasing number of intervals.

3 Samples and Degree: Parameters which control the accuracy of the KPM. Empirical test
showed that the values of samples>100 and degree>50 are required to achieve good
results.

It is important to note that the majority of computational effort is spent performing matrix-
vector multiplications. Most of these multiplications can be performed completely
independent from other multiplications. However, all these multiplications rely on the same
matrix (the normalized graph Laplacian). In order to avoid contention when multiple cores
access this matrix in shared memory at the same time, we recently employed ccNUMA
optimizations. The idea is to store multiple copies of the matrix in the shared memory of each
node to improve performance for processors that have many cores and NUMA domains. See
Section 5.3 of D3.5 [13] for a thorough discussion and analysis of this optimization. This
improvement may be enabled with the optional parameter numa_cores, which specifies
the number of cores that share a NUMA domain. The parameter value depends on the

https://snap.stanford.edu/data/
https://ckan.hidalgo-project.eu/dataset/pokec-relationship-graphs
https://ckan.hidalgo-project.eu/dataset/pokec-relationship-graphs

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 37 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

processor architecture and should be set to the number of CPU cores per NUMA domain. This
number may be displayed via lscpu.
The application outputs the histogram of eigenvalues of the given graph. More precisely, it
states the number of eigenvalue that lie in each of the intervals many bins. In case the input
graph is specified in *.metis format a *.npz file is generated which makes reading the
input in subsequent runs more efficient.
3.3 Automation scripts for deployment of the benchmark and

collecting results
Automation scripts are an integral part of the HiDALGO benchmark suite. In the HiDALGO
benchmark, we automate deployment and installation of the benchmark kernels and their
dependencies on the testbeds with Ansible and Spack. Our scripts reuse Ansible roles for
Spack and external Spack packages developed in Task 4 of WP6. Section 4.2.1 of D6.6 [8]
details the benefits of automated deployment with Ansible and Spack, as well as describes
the Ansible roles for installing software with Spack. The main purpose of using Spack is to
improve performance of the kernel dependencies by their platform-aware installation from
sources, overcome technical limitations for installing software with the conventional package
managers (e.g., lack of Internet access and sudo rights, different vendor-specific software,
etc), and make the benchmarks reproducible. Notably, Spack allows to get the same versions
for the software dependencies of the benchmarked kernels on all testbeds.
Automated deployment scripts are available from the folder ansible. In particular, along
with the inventory files for the testbeds, this folder contains:

1 subfolder spack-configs with Spack configs,
2 playbook hidalgo_bench_deploy.yaml for deploying Spack with the HiDALGO

benchmark software environments, and
3 playbook hidalgo_bench_install.yaml for installing the software

environments with Spack.
Content of the spack-configs subfolder follows guidelines of the Extreme-scale Scientific
Software Stack (E4S) project and includes: the custom Spack packaging scripts missing in the
default Spack distribution (e.g., libOsrm), the configurations for the testbeds
(config.yaml, compilers.yaml, and packages.yaml), and the software stacks of
the benchmark. We define separate software stacks for the CPU kernels (cpu.yaml) and
for the GPU kernels (gpu.yaml).
Besides automated deployment and installation scripts, the folder ansible contains Ansible
playbooks for collecting benchmark results and information about the hardware and the

https://e4s-project.github.io/

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 38 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

installed software of the testbeds. These playbooks allow to report results in a uniform and
precise way, as well as to improve reproducibility. For example, playbookhidalgo_bench_fetch_setup.yaml fetches files spack.lock andhardware.xml from the testbeds. File spack.lock corresponds to the concretized
software environments of the HiDALGO benchmarks installed via Spack on the testbed. It
comprises exhaustive information about the software packages including their versions,
compilation settings, etc. File hardware.xml is produced by the tool lstopo from the
package hwloc. This file includes detailed data about the hardware of the testbed. Annex B
contains visual representation of these data for the studied testbeds.
In order to simplify work with the above mentioned Ansible scripts, we introduced a wrapperbin/hidBS.sh written in bash. Under the hood, this script makes the following call of the
Ansible playbook:
ANSIBLE_ROLES_PATH=$ANSIBLE_ROLES_PATH:./core_scripts/ansible/roles \ansible-playbook -i ./inventory \./hidalgo_bench_${HIDALGO_BENCH_CMD}.yaml \–extra-vars"hidbench_res_dir=results/{{inventory_hostname}}" \-l $HIDALGO_BENCH_HOSTS
Annex A contains quick start instructions on how to use the automation scripts of the
HiDALGO benchmark suite.
3.4 Methodology and tools for collecting measurements and

reporting results
For this deliverable, due to the diversity of the available platforms and the number and
diversity of HiDALGO kernels to be evaluated, we design an evaluation methodology with the
following targets:

 use high-level, command-line tools, that are available on any different system
architecture;

 use tools that require zero to minimal adaptation for their setup and execution on
different systems;

 collect metrics that are indicative of the applications' performance and resource
utilization, where we consider the resources to be the CPU, memory, interconnection
network and filesystem;

 collectmetrics that can offer a fast-and-accurate comparison of different architectures
against an application's performance.

Following the aforementioned targets, we select the following tools for our measurements:

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 39 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

 The Linux time command: This program can time or measure the resource usage
(memory, I/O, inter-process communication) for any simple program. It is handy for
parallel applications as it transparently measures the resource usage for all threads
and any child processes.

 The Linux perf command: This program can gather performance counter statistics
for any simple program. Based on the available performance counters of each
architecture, it is able to accurately profile applications and identify performance
hotspots.

 The mpiP lightweight profiler: This library can collect statistical information about
MPI functions. Its ease of use lies in the fact that it intercepts MPI calls and does not
require application instrumentation for profiling.

Table 9 lists the metrics we collect and the respective tool to collect its metric. Note that we
limit our set of metrics to the intersection of available metrics for different systems. For
example, one can easily use perf to collect counter statistics for the last-level-cache
utilization, but the respective performance counters are not available across the evaluated
architectures, either because the hardware does not offer such capabilities, or because the
site administrator has opted to limit access to such capabilities for security reasons.

Metric Unit Description Tool
Elapsed real time Seconds The end-to-end execution time indicates

the performance
time

Instructions - CPU instructions can indicate differences
between compilers and architectures for
the same program

perf

Cycles - The CPU cycles indicate the performance
of the application irrespective of the
clock frequency

perf

Instructions per
Cycle (IPC)

- The IPC approximately indicates
processor performance

perf
(derived)

Maximum Resident
Set Size (RSS)

KBytes The maximum RSS indicates the memory
footprint of the application

time
MPI Time (%) The percentage of the execution time

spent on MPI functions indicates the
communication intensity of the
application

mpiP

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 40 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Metric Unit Description Tool
Filesystem inputs - The number of filesystem inputs

indicates the I/O intensity of the
application

time

Filesystem outputs - The number of filesystem outputs
indicates the I/O intensity of the
application

time

Table 9: Metrics collected per application
In order to simplify measuring performance with the above-mentioned tools, we developed
a set of wrapping bash functions. These functions are defined in the filetests/common/bin/functions/time_functions.sh. These functions can be
called from bash scripts as follows:

 At first, time_functions.sh should be included and inputs should be specified:
a. if test is located in the tree of HiDALGO benchmark suite, the minimum setting

looks as follows:
current_dir=`dirname "${BASH_SOURCE-$0}"`HBS_TEST_DIR=`cd "${current_dir}/.."; pwd`. $HBS_TEST_DIR/../common/bin/functions/time_functions.sh
It uses the default format of inputs and outputs. Namely, the name of the kernel
corresponds to the name of the folder which holds the script, the outputs are
stored in the subfolder results of the folder with the test, etc.
b. the default behaviour can be customized by a set of environment variables.

E.g.:
HBS_KERNEL=dist_matr_chHBS_SUBKERNEL=contract_$OSRM_PROFILEHBS_DATASET=$GEO_REGIONHBS_TESTCASE=HBS_TIMESTAMP=$(datetime '+%H%M%S')
HBS_OUTPUT_DIR=.HBS_TIME_FILE=$HBS_OUTPUT_DIR/summary.csvHBS_TIME_STDOUT_FILE=test.logHBS_TIME_STDERR_FILE=test.err

2 Afterwards, the benchmarked application should be prefixed with call of the function
that wraps the target performance measurement tool (hbs_time, hbs_perf, orhbs_mpip respectively). E.g.:
hbs_time osrm-contract $WORK_DIR/$OSM_FILE_BASENAME.osrm

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 41 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

As a result, each call of the wrapping function produces log-files with stdout and stderr of the
benchmarked application, as well as appends a record to one of the benchmark summary
files in a CSV format.
Benchmark summary files hold records composed of header and result parts. The header part
is the same for all wrapping functions and includes the following fields:

 testbed name (e.g., "armHi1620"),
 number of used cores in the test (by default it uses the output of nproc),
 kernel name (e.g., "lge"),
 subkernel name (e.g., "extract_car"),
 input data set (e.g., "africa"),
 input data subset (by default "0"),
 timestamp when subkernel was launched in the format "+%Y%d%m%H%M%S".

The result part depends on the tool for measuring performance. In case of hbs_time, the
following fields are reported by default:

 status of the execution (0 if succeeded),
 elapsed real (wall clock) time used by the process in seconds,
 maximum resident set size of the process during its lifetime in KB,
 number of file system inputs,
 number of file system outputs.

This default behaviour is achieved by specifying the format string "%x,%e,%M,%I,%O" for/usr/bin/time and can be changed by updating an environment variableHBS_TIME_METRICS with the new format string.
In case of hbs_perf, the summary file reports the following performance counters by
default:

 instructions,
 cycles.

This list can be changed by specifying an environment variable HBS_PROF_METRICS.
In case of hbs_mpip, the summary file contains only one result field which corresponds to
the percentage of MPI time.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 42 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Measurement collection is automated through the usage of the HiDALGO benchmark suite.
Using the three tools – time, perf, and mpiP, – and the respective scripts, three .csv files
are produced, hbs_time.csv, hbs_perf.csv and hbs_mpiP.csv. All results are
stored in the HiDALGO GitLab repository: https://gitlab.com/eu_hidalgo/benchmarking/.
Python scripts are provided to analyse data with pandas and plot results directly from
the .csv file in a uniform manner for each application, comparing the different metrics on
different systems in the form of barplots. These scripts are available from fileshbs_read.py and hbs_plot.py in the folder tests/common/python. In particular,
one can read the pandas dataframe with the mean values for all metrics collected for lge-extract subkernel of LGE kernel with europe/ukraine dataset, using the following
script:
from hbs_read import *df = read_summary_data(HBSReader('.'),hbs_kernel = 'lge', hbs_subkernel='lge-extract',hbs_dataset = 'europe/ukraine')
These results can be further visualized in the form of barplots using the script:
from hbs_plot import *prep_sns()plot_summary_data(df)

3.5 Comparison with another benchmarks
HiDALGO benchmark suite is one of several benchmark suites that can be applied to evaluate
hardware platforms for large scale Global System Science (GSS) applications. As an example,
in this section we provide details about SPEC and CoeGSS benchmark suites [22,23].
Nevertheless, in contrast to other GSS benchmark suites, HiDALGO benchmark suite is tightly
connected to and carefully accounts for the requirements of its use cases.
SPEC CPU suites are popular benchmark suites for testing CPU performance by measuring the
run time of several programs. SPEC CPU 2017 package is the latest version of SPEC CPU which
is composed of four suites [23]. These suites contain only 10 out of 43 benchmarks which can
be applicable to solving subtasks in the data flows of HiDALGO use cases. Moreover, these
benchmarks do not cover many computationally expensive parts of the data flows listed in
Section 3.2.1. Table 10 summarizes this information. Finally, SPEC CPU 2017 package
compares platforms based on elapsed time and throughput (or work per unit of time) only,
which does not allow to draw solid conclusions and reason deeply about performance of the
testbeds.

https://gitlab.com/eu_hidalgo/benchmarking/-/

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 43 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Kernel Domain Language Pilot Purposex05.mcf_r Pre-process/GIS C MIG Route planningx20.omnetpp_r Simulation/ABSS C++ SNA Discrete Event simulation
- computer networkx19.lbm_r Simulation/CFD C UAP Fluid dynamicsx21.wrf_r Simulation/CFD Fortran, C MIG,

UAP
Weather forecasting

x27.cam4_r Simulation/CFD Fortran, C UAP Atmosphere modelling
Table 10: Accordance between the kernels of the SPEC CPU 2017 benchmark suite and HiDALGO use cases (xcorresponds to 5 for SPECrate suite and 6 for SPECspeed suite)
In contrast to SPEC CPU, CoeGSS benchmark suite is designed specifically for GSS and GC
applications [22]. Many of its kernels can be a good alternative to the simulation kernels of
the HiDALGO benchmark suite. Nevertheless, this benchmark suite lacks pre- and post-
processing kernels relevant for HiDALGO use cases. Table 11 reflects correspondence
between the kernels of CoeGSS benchmark suite and HiDALGO use cases. Moreover, similarly
to SPEC CPU, the kernels of CoeGSS benchmark suite can be launched on CPU testbeds only.

Kernel Domain Language Pilot Purpose
IPF Pre-

process/ABSS
C - Population synthesis with

iterative proportional
fitting

ABM4Py/GG Simulation/ABSS Python MIG,
UAP

Graph-based ABSS for
green growth model

Pandora/GG Simulation/ABSS C++ MIG,
UAP

Naive ABSS for green
growth model

CMAQ/CCTM Simulation/CFD Fortran, C UAP Community air multiscale
quality modelling system

CM1 Simulation/CFD C UAP Model for studying
atmospheric processes

OpenSWPC Simulation/CFD C - Open-source seismic wave
propagation code

HRWF Simulation/CFD Fortran, C - Hurricane weather
research and forecasting
model

Table 11: Accordance between the kernels of the CoeGSS benchmark suite and HiDALGO use cases

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 44 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 45 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

4 Benchmark findings
In this chapter, we outline results of the benchmark. Note that some performance
measurement tools are not applicable to all HiDALGO benchmark kernels. In particular, we
skip measuring with mpiP for LGE kernel and kernels targeting GPU testbeds, since these
applications do not use MPI. In addition, some of the applications cannot be ported to all our
testbeds. For example, Fluids and RapidCFD require CUDA, which is available on testbeds
with Nvidia cards. In our case, it is only nvA100 testbed. Table 12 summarizes information
about these restrictions.

Kernel Testbeds time perf mpiP
Flee All CPU √ √ √
OpenFOAM All CPU √ √ √
SNSimulatior All CPU √ √ √
LGE All CPU √ √ -
KPM All CPU √ √ √
Fluids-GPGPU nvA100 √ - -
RapidCFD-GPGPU nvA100 √ - -
SVD All GPU √ √ -

Table 12: HiDALGO benchmark matrix
For each application, we focus on comparing the performance and various metrics, on 16
cores and on a full node, where the respective core count varies with the capacity of each
system.
Results of the benchmark are uploaded to the folder deliverable_5_8 of the GitLab
repository: https://gitlab.com/eu_hidalgo/benchmarking .
4.1 Migration use case
4.1.1 Experimental setup
All kernels of the migration use case are designed for running on CPUs. Table 13 outlines the
software environments which we used on the CPU testbeds with this pilot. C++ codes were
compiled with the GCC. In our tests, we applied GCC, Python, MPI, Mpi4py, Numpy, and

https://gitlab.com/eu_hidalgo/benchmarking

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 46 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Pandas pre-installed by vendors of the testbeds. Boost and OSRM (along with their
dependencies) were installed by Spack.

Software intel8268 amd7763 armHi1620
GCC 9.3.0 9.3.0 7.5.0
CMake 3.18.4 3.19.3 3.18.4
Python 3.7.10 3.8.12 3.7.5
MPI OpenMPI 3.1.3 OpenMPI 4.0.2 MPICH 3.3
Numpy 1.20.2 1.20.1 1.19.5
Mpi4py 3.0.3 3.0.3 3.0.2
Pandas 1.1.5 1.1.5 1.1.5
Boost 1.74 1.74 1.74
OSRM 5.22 5.22 5.22

Table 13: Software environment for the kernels of Migration use case on CPU testbeds (intel8268, amd7763and armHi1620)

4.1.2 Results discussion
Flee kernel. We have performed a micro-scale simulation with Flee for 10 days (t=10). We
have used a synthetically generated graph, and have simulated a case where the initial
number of agents is 2M and 10000 new agents are added per time step. The results are
presented in Figure 1, for a synthetic 10-10-4 graph, for three different systems.
We observe that Flee demonstrates the best performance in terms of execution time on
amd7763, both when using 16 cores, and when using the full node. The latter is expected, as
amd7763 hosts 128 cores, which is more than two times the 40 cores of intel8268. However,
the execution time on armHi1620 also drops significantly, but performance is not bound by
computation or memory, as indicated by the increase in IPC, in combination with the high
percentage of time spent on MPI in this case. As communication occurs over shared memory,
this effect could be the result of unoptimized MPI functions, therefore the performance on
Kunpeng can eventually be comparable to that of amd7763 and both architectures are a good
fit for Flee. Regarding I/O, a high number of filesystem inputs is observed on intel8268 on 16
cores, which is attributed to library initializations and not the application. Similarly, the high
number of outputs on amd7763 is also attributed to the software stack and not the
application, since it is not observable on other systems.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 47 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Figure 1. Flee evaluation on CPU testbeds using 16 cores and using all cores of the testbed.
LGE kernel. We have performed experiments for all three subkernels of the LGE kernel with
the datasets listed in Table 7. All results are uploaded to the GitLab repository. In this section,
we focus on the results for the dataset of Ukraine. In contrast to the small dataset of South
Sudan or the big dataset of Germany, this dataset has an optimal size for benchmarking LGE
kernel: it is sufficiently large to reveal performance trends for full testbeds, while the
complete benchmark execution takes reasonable time. The dataset of Ukraine, the original
OpenStreetMap extract hold 642MB in *.osm.pbf format. It contains route network with
86.8M nodes, which have to be reduced to the location graph with 26.9K locations
corresponding to Ukrainian cities, towns, and villages.
Figure 2 presents results for the osrm-extract subkernel for CPU testbeds. amd7763
demonstrates the best execution time on both when using 16 cores, and when using the full
node. Nevertheless, the execution time on amd7763 drops only slightly when increasing the
number of used cores from 16 to 128. The worst execution time is observed for armHi1620.
Moreover, it grows when we switch from 16 cores to the full testbed (96 cores) despite the
dramatic increase in IPC. This effect could be explained by noting that osrm-extract is an
I/O and memory bound application, in conjunction, that armHi1620 is less optimized for
memory and I/O operations than other two testbeds. osrm-extract produces roughly
the same large number of outputs for all testbeds, independent of the number of utilized

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 48 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

1In Figure 2, Figure 3, and Figure 4, bar plots withMPIp results are left empty since LGE kernel is a multi-threadedapplication which does not use MPI for parallelism.

cores. The RAM consumption is comparable with the number of outputs and increases as the
number of utilized cores becomes larger.

Figure 2. Evaluation of the osrm-extract subkernel of LGE kernel on CPU testbeds using 16 cores and usingall cores of the testbed.1
Figure 3 illustrates results for the osrm-contract subkernel. In this case, the best
execution time corresponds to the amd7763 testbed, while the worst corresponds to the
intel8268 testbed. At the same time, intel8268 demonstrates the highest IPC. For all testbeds,
execution time significantly drops when we utilize all cores available on the testbed, while
IPC increases with the number of cores. Even though this subkernel produces large outputs
and requires a lot of RAM, it is more computationally extensive than osrm-extractwhich
allows to mitigate I/O bottlenecks of the armHi1620 testbed. Amount of outputs remains
independent of the testbed and the number of cores. The RAM consumption is roughly twice
higher than the amount of outputs and has a tendency to grow slowly with the number of
cores.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 49 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Figure 3. Evaluation of the osrm-contract subkernel of LGE kernel on CPU testbeds using 16 cores and usingall cores of the testbed.

Figure 4 shows results for the lge-extract subkernel. In this case, intel8268 testbed
outperforms amd7763 and armHi1620 in terms of execution time, while armHi1620 has the
worst execution time. The RAM consumption is the highest among all LGE subkernels, stays
the same for all testbeds regardless of the number of cores. The latter is expected, as the
memory complexity of the algorithms is dictated by the size of the distance matrix, which
stays in the RAM during the computations. Amount of outputs is very small compared to the
RAM consumption.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 50 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Figure 4. Evaluation of the lge-extract subkernel of LGE kernel on CPU testbeds using 16 cores and using allcores of the testbed.

4.2 Urban Air Pollution use case

4.2.1 Experimental setup
Urban Air Pollution use case is represented by one CPU kernel – OpenFOAM, – and three GPU
kernels – Fluids-GPGPU, RapidCFD-GPGPU, and Magma. Moreover, Fluids and RapidCFD
require CUDA runtime, and thus available only on nvA100 testbeds.
In our experiments, OpenFOAM kernel was compiled with GCC and linked against MPI pre-
installed by vendors of the CPU testbeds.

Software intel8268 amd7763 armHi1620
GCC 10.2.0 3.19.3 7.5.0
CMake 3.18.4 9.3.0 3.18.4
MPI OpenMPI 4.1.0 OpenMPI 4.0.2 OpenMPI 4.0.2
OpenFOAM v 20 12 v 20 12 v 20 12

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 51 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Table 14: Software environment for the kernels of UAP use case on CPU testbeds (intel8268, amd7763 andarmHi1620)
On our GPU testbeds, we also used versions of GCC, CUDA, and ROCm pre-installed by
vendors. The only exception is RapidCFD kernel which can be installed only with CUDA up to
version 11.1. Due to the implementation of the libraries and technical restrictions of the
testbeds, we did not install Magma, RapidCFD, and Fluids on the testbed with AMD MI100
cards. Moreover, TensorFlow was installed with PyPI using packages tensorflow-gpu
and tensorflow-rocm respectively.

Software nvA100 amdMi100
GCC 9.2.0 7.5.0
CMake 3.16.4 3.21.4
Magma (with GPGPU API) 2.5.4 (CUDA 11.4) -
TensorFlow 2.4.3 (CUDA 11.4) 2.4.3 (ROCm 4.5)
RepastHPC (with GPGPU API) x.y.z (CUDA 11.1) -
Fluids (with GPGPU API) x.y.z (CUDA 11.4) -
Table 15: Software environment for the kernels of UAP use case on GPU testbeds (nvA100 and amdMi100)

4.2.2 Results discussion
OpenFOAM kernel. The OpenFOAM kernel was investigated on all novel CPU architectures.
The smallest mesh size of the model of Győr was used with 728k cells and only the third step
of the kernel was looked at, which has only applications run in parallel. The weather data was
acquired from ECMWF from the day of 20th June, 2020. Also, a realistic simulation data was
used for traffic and calculation for the emission. For the steady state calculations withsimpleFoam 600 iterations were made and one hour real time was simulated bypimpleFoam for the transient part. We report metrics on these two applications.
Figure 5 illustrates the performance markers of the steady state simulation withsimpleFoam. The amd7763 performs the fastest, however it cannot gain anymore speedup
over 16 cores on a full node. On both other architectures runtime improves significantly. The
maximum largest resident set is the largest on the amd7763 and it increases slightly for a full
node. Other architectures have smaller maximum set size, moreover this value decreases for
full node. The proportional time spent onMPI communication is around 20% for 16 cores and
jumps to 40-80% for the full node. Filesystem I/O is consistent among the architectures,
filesystem inputs was not measured on armHi1620, however.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 52 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Figure 5. Evaluation of the submodule simpleFoam on CPU testbeds using 16 cores and using all cores ofthe testbed.
Figure 6 illustrates the performance markers of pimpleFoam. Here, runtime on the
amd7763 gets a significant improvement on runtime, too. Memory usage, IPC and IO outputs
marker behaviour is the same as in the steady state simulation, except for IO inputs, which
are a fraction of the previous one.MPI Time% shows an inverse behaviour to number of cores
on the node. The amd7763 is the fastest, has the smallest room for improvement, however,
because of the high proportion of MPI communication.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 53 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Figure 6. Evaluation of the submodule pimpleFoam on CPU testbeds using 16 cores and using all cores ofthe testbed.
Fluids kernel. We ran our benchmarks for fluid_solver on nvA100 testbed for the
dataset corresponding to the city of Antwerp. We studied 3 test cases: one for FOM and two
for ROM. In the case of the ROM, we tested for two different CFL values, 1000 and 2000. We
kept the dimension of the reduced order model space (r) constant. Table 16 presents the
results. Our benchmarks show that utilizing Nvidia A100 cards leads to significant reduction
in the runtime. The test cases performed at least 10 times faster if GPU was utilized.

Test case nvA100 (no GPUs) nvA100 (single GPU)
FOM 820109 30221
ROM(r=10, CFL=1000) 2842 38
ROM(r=10, CFL=2000) 1500 19
Table 16: Evaluation of the Fluids kernel on nvA100 testbed disabling all GPUs and enabling single GPU.

RapidCFD kernel. In this investigation, the performance experiments are conducted to examine
the capabilities of novel GPUs and assess the performance of the selected simpleFoam
solver from RapidCFD. The latest version of RapidCFD is compiled for platforms equipped
with Nvidia V100 GPU (as a part of the Altair cluster) and Nvidia A100 GPU (nvA100 testbed).
We use CUDA 10.2 and CUDA 11.1 for Nvidia V100 and Nvidia A100 accelerators,

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 54 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

respectively, to accomplish the compilation process. At the same time, we observe a
compilation issue of RapidCFD with the newest versions of CUDA >=11.2 that fully support
the Nvidia Ampere GPU microarchitecture. In addition, we test the performance of thesimpleFoam solver on GPU in comparison to the CPU version of this solver available in
OpenFOAM 2.3.1. For this purpose, we use intel8268 testbed.
Table 17 summarizes the concluded performance measurements. This table outlines the
execution time of the simpleFoam solver obtained for different computing testbeds and
various mesh sizes. We observe that the simpleFoam solver run on Nvidia A100 GPU allows
achieving slightly better performance than on Nvidia V100 GPU for relatively larger mesh
sizes and comparable performance for smaller sizes. However, the simpleFoam solver from
OpenFOAM executed on Intel8268 testbed offers better performance than the RapidCFD
version in all performed tests.

Test case (mesh size) Intel8268(OpenFOAM) nvV100(RapidCFD) nvA100(RapidCFD)
12M 1656.8 1966.3 1748.5
4M 497.5 887.5 896.4
2M 182.5 614.4 688.3
Table 17: Evaluation of the simpleFoam solver available in RapidCFD and OpenFOAM using intel8268 andnvA100 testbeds.

SVD kernel. We have performed SVD on double precision floating point square matrices of
sizes ranging from 1000 to 32000 (see Annex C). Figure 7 presents the results for both GPU
testbeds and both subkernels when the matrix has size 32000. Since we use neither MPI nor
I/O for this kernel, we do not report these metrics on the figure.
We observe that Magma computes SVD order of magnitude faster than TensorFlow. The
latter is expected, as Magma involves both CPUs and GPU in computations, while TensorFlow
computes SVD only with GPU card. It is also indicated by the higher IPC for Magma compared
to TensorFlow. The execution time of TensorFlow on nvA100 testbed is lower than on
amdMi100. It can be explained by higher peak FP64 performance of Nvidia A100. At the same
time, the difference in execution time is less dramatic than the difference in peak FP64
performance. The memory consumption of both subkernels is roughly the same. TensorFlow
requires slightly more memory which can be related to the implementation of the library.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 55 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Figure 7. Evaluation of the SVD on GPU testbeds.

4.3 Social Network use case

4.3.1 Experimental setup
Social Network use case is represented by two kernels – SNSimulatior and KPM, – both of
which are designed for running of CPUs. In case of kernels for SNA pilot, we usedMPI, Python,
and Python libraries pre-installed by vendors of the testbeds.

Software intel8268 amd7763 armHi1620
Python 3.7.10 3.8.12 3.6.9
MPI OpenMPI 3.1.3 OpenMPI 4.0.2 MPICH 3.3
Numpy 1.20.2 1.20.1 1.19.5
Mpi4py 3.0.2 3.0.3 3.0.2
Scipy 1.6.2 1.7.1 1.5.4
Numba 0.53.1 0.54.1 0.53.1
Pandas 1.1.5 1.1.5 1.1.5
Table 18: Software environment for the kernels of SNA use case on CPU testbeds (intel8268, amd7763 andarmHi1620)

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 56 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

4.3.2 Results discussion
SN-Simulator kernel. We have performed a social network simulationwith the SN application,
for the neos_20201110 dataset, using 400 sources, 1000 samples and a random seed of 12.
The results are presented in Figure 8, for three different systems.
We observe that SN demonstrates its best performance in terms of execution time on
amd7763 testbed, however it is scalable both on intel8268 testbed and on armHi1620
testbed. Its IPC remains unchanged with the number of cores, thus the application can benefit
from parallelism. However, its IPC on armHi1620 testbed is relatively low, thus this
architecture is not a good fit for this specific application.

Figure 8. SN-Simulator evaluation on CPU testbeds using 16 cores and using all cores of the testbed.
KPM kernel. We have performed a computation of the network eigenvalues histogram with
the Kernel Polynomial Method (KPM) for a subgraph of the pokec social network graph with
a size of 50,000. We used 96 intervals, a degree of 62 and 512 samples. The results are
presented in Figure 9, for three different systems.
We observe that the best performance in terms of execution time is achieved on amd7763
testbed. However, both on amd7763 testbed and on intel8268 testbed, using more cores on
a single node has a negative effect on performance. The memory footprint of the application
slightly increases when utilizing more cores, on all three cases, however, the application’s IPC
shows different behaviour on all three nodes: when adding more cores, a better IPC is

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 57 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

observed on intel8268 testbed, a worse IPC is observed on amd7763 testbed, and an equal
IPC is observed on armHi1620 testbed. What determines this behaviour is actually the
application’s communication, which leads to extreme increases in MPI time on amd7763
testbed and intel8268 testbed, but not on Kunpeng 920. Therefore, in this case, intel8268
testbed could be the most promising architecture in terms of per-core performance for the
application’s scalability, given the improvement in IPC, if the effects of communication are
mitigated. However, in its current status, the application is mostly benefited from the faster
cores of amd7763 testbed. A significant number of filesystem inputs is observed on the
intel8268 testbed, however it does not impact performance. Since this is not observed across
all systems, it is attributed to the software stack and not the application.

Figure 9. KPM evaluation on CPU testbeds using 16 cores and using all cores of the testbed.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 58 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

5 Conclusion
In D5.8, we assess five contemporary processing unit architectures – 3 CPUs and 2 GPUs –
that in the near future can be dominant in HPC environments. These processing units come
from major CPU and GPU vendors: AMD, ARM (Huawei), Intel, and Nvidia. The assessment is
fulfilled using the HiDALGO benchmark suite.
In contrast to the existing counterparts such as SPEC and CoeGSS benchmark suites, HiDALGO
benchmark suite is suitable not only for CPU, but also for GPU testbeds. It incorporates a wide
range of benchmarks for CPU and GPU testbeds that cover diverse numerical simulations
from ABSS to CFD as well as computationally expensive data pre- and post-processing kernels
related to linear algebra and GIS. These benchmarks are derived from the analysis of the
hotspots in the data flows of HiDALGO pilots. HiDALGO benchmark suite reports a wider
range of metrics compared to SPEC and CoeGSS benchmark suites, which allows to gain
deeper understanding the bottlenecks in the testbeds and software. At the same time, the
methodology for collecting metrics does not require instrumentation and relies on a simple
set of tools – /urs/bin/time, perf stat, and mpiP – natively available at all *nix
systems. Solid attention is put on reporting of the results and reproducibility. All results are
collected in the CSV files and supplemented with Python scripts for analysis and visualization.
Along with the measurements, we precisely report experimental setup: the hardware
configuration as an XML output of lstopo and the exact software environment as a Spack
lock file. Last but not least, the HiDALGO benchmark suite contains a broad set of automation
scripts including Ansible playbooks for deployment, installation, fetching setups and results,
etc. Simple and portable methodology, as well as powerful automation scripts make it easy
to extend HiDALGO benchmark suite with the new benchmark kernels and testbeds.
Our benchmarks reveal that the individual Zen3 cores of AMDMilan CPUs are more powerful
than Cascade Lake-SP cores of Intel Xeon Platinum 8268 and ARM Cortex-A72 cores of
Kunpeng 920. At the same time, in many benchmarks Intel Xeon Platinum 8268 and Kunpeng
920 demonstrate better scalability than AMD Milan CPUs as the number of utilized cores
grows. Moreover, in certain situations (e.g., triangular pruning step of location graph
extraction), both Intel Xeon Platinum 8268 and Kunpeng 920 can outperform AMD Milan for
sufficiently large number of cores.
Even though state-of-the-art AMD GPUs like MI100 provide a viable alternative to
contemporary Nvidia cards like A100 in terms of performance, they are still a subject of many
limitations related to porting the software. In particular, out of 3 GPU kernels from the
HiDALGO benchmark suite, only one partially supports AMD GPUs, while all of them fully
support compilation with CUDA.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 59 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Despite our efforts to include into the study as diverse and representative selection of the
testbeds as possible, we were not able to get access to all testbeds with promising novel
microarchitectures. In particular, we lack results for Intel processors with Cooper Lake cores
which support BF16. This is a subject of future research.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 60 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

References
[1] HiDALGO, "D5.5 – Innovative HPC Trends and the HiDALGO Benchmarks." 2021.
[2] HiDALGO, "D4.2 – Implementation Report of the Pilot Applications Year 1." 2019.
[3] HiDALGO, "D4.3 – Implementation Report of the Pilot Applications Year 2." 2020.
[4] HiDALGO, "D4.4 – Final Implementation Report of the Pilot and Future Applications."

2021.
[5] HiDALGO, "D6.2 – Workflow and Services Definition." 2019.
[6] HiDALGO, "D6.4 – Initial Report on Requirements, Components and Workflow

Integration." 2019.
[7] HiDALGO, "D6.5 – Intermediate Report on Requirements, Components and

Workflow Integration." 2020.
[8] HiDALGO, "D6.6 – Final Report on Requirements, Components and Workflow

Integration." 2021.
[9] HiDALGO, "D3.1 – Report on Benchmarking and Optimisation." 2019.
[10] HiDALGO, "D3.2 – Initial Specifications for HPC Scalability Optimisation, HPDAModel

Implementation, Data Management, Visualisation and Coupling Technologies."
2019.

[11] HiDALGO, "D3.3 – Intermediate Report on Implementation and Optimisation
Strategies." 2019.

[12] HiDALGO, "D3.4 – Intermediate Report on Benchmarking, Implementation,
Optimisation Strategies and Coupling Technologies."2020.

[13] HiDALGO, "D3.5 – Final Report on Benchmarking, Implementation, Optimisation
Strategies and Coupling Technologies." 2021.

[14] Ronny Krashinsky, Olivier Giroux, Stephen Jones, Nick Stam, and Sridhar
Ramaswamy, "Nvidia Ampere Architecture In-Depth." May 14, 2020. URL:
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

[15] Nvidia Corporation, "Nvidia A100 40GB PCIe GPU Accelerator: Product Brief PB-
10137-001_03." September 2020. URL: https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/a100/pdf/A100-PCIE-Prduct-Brief.pdf

[16] Nvidia Corporation, "Nvidia A100 Tensor Core GPU: Unprecedented acceleration at

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/A100-PCIE-Prduct-Brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/A100-PCIE-Prduct-Brief.pdf

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 61 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

every scale." 2021. URL: https://www.nvidia.com/en-us/data-center/a100/
[17] Advanced Micro Devices, Inc., "Introducing AMD CDNA Architecture: The All-New

AMD GPU Architecture for the Modern Era of HPC & AI." 2020. URL:
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf

[18] Timothy Prickett Morgan, "AMD At A Tipping Point With Instinct MI100 GPU
Accelerators." 2020. URL: https://www.nextplatform.com/2020/11/16/amd-at-a-
tipping-point-with-instinct-mi100-gpu-accelerators/

[19] Hassan Mujtaba, "AMD Unveils Instinct MI100 CDNA GPU Accelerator, The World’s
Fastest HPC GPU With Highest Double-Precision Horsepower." 2020. URL:
https://wccftech.com/amd-unveils-instinct-mi100-cdna-gpu-accelerator-the-
worlds-fastest-hpc-gpu/

[20] Hewlett Packard Enterprise Development LP, "HPE Apollo 6500 Gen10 Plus System
– Overview." 2021. URL:
https://support.hpe.com/hpesc/public/docDisplay?docId=a00109734en_us&
docLocale=en_US

[21] HLRS, “HPE Apollo (Hawk): Next-Generation HPC System @ HLRS.”
https://www.hlrs.de/systems/hpe-apollo-hawk/

[22] Damian Kaliszan, Norbert Meyer, Sebastian Petruczynik, Michael Gienger, and Sergiy
Gogolenko, "HPC Processors Benchmarking Assessment for Global System Science
Applications." Supercomputing Frontiers and Innovations, 6 (2), 2019. DOI:
10.14529/jsfi190202

[23] Standard Performance Evaluation Corporation (SPEC), "SPEC CPU®2017 Overview:
What's New?" URL: https://www.spec.org/cpu2017/Docs/overview.html

[24] Christoph Schweimer, Bernhard C. Geiger, Meizhu Wang, Sergiy Gogolenko, Imran
Mahmood, Alireza Jahani, Diana Suleimenova, and Derek Groen. "A route pruning
algorithm for an automated geographic location graph construction." Scientific
Reports, 11(11547), 2021. DOI: 10.1038/s41598-021-90943-8

[25] Edoardo Di Napoli, Eric Polizzi, and Yousef Saad, "Efficient estimation of eigenvalue
counts in an interval." Numerical Linear Algebra with Applications, 29 (1), 2016. DOI:
10.1002/nla.2048

[26] Linux Foundation, "time (1) – Linux manual page." URL:
https://man7.org/linux/man-pages/man1/time.1.html

[27] Linux Foundation, "perf-stat (1) – Linux manual page." URL:
https://man7.org/linux/man-pages/man1/perf-stat.1.html

https://www.nvidia.com/en-us/data-center/a100/
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.nextplatform.com/2020/11/16/amd-at-a-tipping-point-with-instinct-mi100-gpu-accelerators/
https://www.nextplatform.com/2020/11/16/amd-at-a-tipping-point-with-instinct-mi100-gpu-accelerators/
https://wccftech.com/amd-unveils-instinct-mi100-cdna-gpu-accelerator-the-worlds-fastest-hpc-gpu/
https://wccftech.com/amd-unveils-instinct-mi100-cdna-gpu-accelerator-the-worlds-fastest-hpc-gpu/
https://support.hpe.com/hpesc/public/docDisplay?docId=a00109734en_us&%20docLocale=en_US
https://support.hpe.com/hpesc/public/docDisplay?docId=a00109734en_us&%20docLocale=en_US
https://www.hlrs.de/systems/hpe-apollo-hawk/
https://www.spec.org/cpu2017/Docs/overview.html
https://doi.org/10.1038/s41598-021-90943-8
https://doi.org/10.1002/nla.2048
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/perf-stat.1.html

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 62 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

[28] LLNL, "mpiP 3.5: A light-weight MPI profiler." URL: https://software.llnl.gov/mpiP/

https://software.llnl.gov/mpiP/

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 63 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Annex A. Quick start to the automated deployment
with the HiDALGO benchmark

Ansible is a necessary prerequisite, thus, before running hidBS make sure you haveAnsible on your control workstation. There are many ways to install Ansible. One of the
simplest is via PyPI
python -m venv ~/ansible# . ~/ansible/bin/activatepython -m pip install -r ./ansible/requirements.txt
In order to make your work more comfortable, it is also recommended to register remote
testbed credentials in Ansible. You can store user logins like this:
mkdir -p ./ansible/inventory/host_varsecho "ansible_user: <your-psnc-atlas01-login>" > ./ansible/inventory/host_vars/armHi1620.yaml
For the sensitive information like passwords, you should use either SSH keys or Ansible vaults.
For cloning the HiDALGO benchmark repo use:
git clone https://gitlab.com/eu_hidalgo/hidalgo_bench_suite.gitgit pull –recurse-submodules
As soon as Ansible is installed and repo is cloned, you can run hidBS following these steps:

 getting help information
./bin/hidBS.sh help

 fast deployment of Spack at testbeds and submission of software installation jobs
with Ansible
./bin/hidBS.sh deploy./bin/hidBS.sh install./bin/hidBS.sh fetch_setup
If you need only a specific testbeds (subset of inventories), you can place the names
in the command line
./bin/hidBS.sh deploy armHi1620,nvA100./bin/hidBS.sh install armHi1620,nvA100

o collecting information about platforms
./bin/hidBS.sh fetch_setup
If you have hwloc on your local workstation, you can visualize topology of the testbed

https://www.open-mpi.org/projects/hwloc/

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 64 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

lstopo -i ./hidBS/armHi1620/setup/hardware.xml
 cleaning up from the installation

./bin/hidBS.sh cleanup armHi1620,nvA100

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 65 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Annex B. Topology of the testbeds
This annex holds figures with the system topology of each testbed as generated by lstopo.
CPU testbeds

Figure 10. Topology of the intel8268 testbed.

Figure 11. Topology of the armHi1620 testbed.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 66 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Figure 12. Topology of the amd7763 testbed.

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 67 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

GPU testbeds

Figure 13. Topology of the nvA100 testbed (single package out of two identical).

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 68 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Figure 14. Topology of the amdMi100 testbed (single package out of two identical).

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 69 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Annex C. Auxiliary benchmark results
In certain cases, in order to approve or refute unexpected conclusions about performance of
the testbeds with different kernels, we require additional benchmarks that go beyond the
scope of the methodology of the HiDALGO benchmark suite. Results of such auxiliary
benchmarks are presented in this Annex.
Migration use case
Figure 4 shows that intel8268 testbed requires less time than amd7763 testbed to executelge-extract subkernel of LGE kernel on europe/ukraine dataset. It can give a wrong
impression that Cascade Lake-SP cores of Intel Xeon Platinum 8268 outperform Zen3 cores
of AMD Milan. In order to disprove this hypothesis, we performed a number of auxiliary
measurement for the lge-extract subkernel, which are summarized in Figure 15.

(a) Computing distance matrix (b) Triangular pruning
Figure 15. Scaling of computing routing table and triangle pruning of LGE kernel with the number of cores onCPU testbeds.
Figure 15 demonstrates how two computational steps of the lge-extract subkernel –
computing distance matrix and triangular pruning – scales with the number of cores. In the
step of computing distance matrix, elapsed time remains invariant to the number of the
utilized cores. This is due to the fact that OSRM library uses only one core to compute distance
matrix. In this step, amd7763 testbed is significantly faster than intel8268 and arm1620.
Similarly, in the step of triangular pruning, amd7763 outperforms intel8268 and arm1620
testbed for the small number of cores. In other words, for both steps, Zen3 cores of AMD

Document name: D5.8 Final Benchmark Results for Innovative Architectures Page: 70 of 70
Reference: D5.8 Dissemination: PU Version: 1.0 Status: Final

Milan perform better than competitors. Nevertheless, as the number of cores becomes more
than 8, performance of amd7763 significantly drops, while performance of intel8268 and
arm1620 scales almost linearly with the number of cores for up to the full capacity of cores in
the testbeds. This scalability issue explains better results for intel8268 when the number of
cores is equal 16.
Urban Air Pollution use case
Figure 16 demonstrates how elapsed time and IPC for SVD kernel change with the size of the
problem on nvA100 testbeds. Magma performs SVD almost order of magnitude faster than
TensorFlow. IPC for TensorFlow drops quickly as the size of the problem growth, while
changes in IPC for Magma are relatively slow. Both these facts illustrate the main difference
in utilizing computational resources by Magma and TensorFlow: TensorFlow computes SVD
on GPU cards, while Magma involves additionally utilizes available CPUs.

(a) Elapsed time (b) IPC
Figure 16. Change in the elapsed time and IPC with the size of the problem for SVD kernel on nvA100testbed.

