HIiDALGO

D5.6 Second HIDALGO Portal Release and
System Operation Report

Document Identification

Status Final Due Date 30/09/2020

Version 1.2 Submission Date 16/04/2021

Related WP WP5 Document Reference D5.6

Related D5.1, D5.2, D5.3, D5.7 | Dissemination Level (*) | PU

Deliverable(s)

Lead Participant | ATOS Lead Author F. Javier Nieto (ATOS)

Contributors USTUTT, PSNC, Reviewers Tamas Tomaschek

ECMWE, ICCS, KNOW (MK)

Marcin Plociennik
(PSNC)

Keywords:

HPCaa$s, HIDALGO, CoE, Portal, Web, Entrypoint, CI/CD infrastructure, SSO, workflows,
training, data management, visualization, support tools, interactive notebooks

Disclaimer

This document is issued within the frame and for the purpose of the HIDALGO project. This project has received funding from the European
Union’s Horizon2020 Framework Programme under Grant Agreement No. 824115. The opinions expressed, and arguments employed
herein do not necessarily reflect the official views of the European Commission.

This document and its content are the property of the HIDALGO Consortium. All rights relevant to this document are determined by the
applicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents
are not to be used or treated in any manner inconsistent with the rights or interests of the HIDALGO Consortium or the Partners detriment
and are not to be disclosed externally without prior written consent from the HiDALGO Partners.

Each HiDALGO Partner may use this document in conformity with the HIDALGO Consortium Grant Agreement provisions.

(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement;
Cl: Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

N
e@ HiDALGO

Document Information

List of Contributors

Name Partner
F. Javier Nieto ATOS
Raul Santos ATOS
Dineshkumar Rajagopal USTUTT
Anna Mack USTUTT
Krzesimir Samborski PSNC
Marcin Lawenda PSNC
Claudio lacopino ECMWEF
Milana Vuckovic ECMWF
Konstantinos Nikas ICCS
Manuela Rauch KNOW

Document History

Version Date Change editors Changes
0.1 22/07/2020 | F. Javier Nieto TOC.
0.2 07/08/2020 | F. Javier Nieto Updated ToC, introduction
0.3 15/08/2020 | K. Samborski, D. Contributions to section 3, 5.1.1, 6, 11,
Rajagopal 12,13, 13.2
0.4 17/08/2020 | C. lacopino Contributions to section 5.1
0.5 20/08/2020 | A. Mack, M. Rauch Contributions to section 8
0.6 10/09/2020 | K. Samborski, D. Updates in section 3, contributions to
Rajagopal, F. J. Nieto, | section 4, 9, 10 and 12. Update of
K. Nikas, M. Vuckovic | section 5
0.7 29/09/2020 | M. Lawenda Section 7
0.8 14/12/2020 | F. J. Nieto, R. Santos Updates in section 11
1.0 15/01/2021 | F. J. Nieto Several modifications (section 2, 5, 11)
1.1 16/03/2021 | D. Rajagopal, K. Nikas | Address internal review comments
(section 6 and 10)
1.2 06/04/2021 | F. J. Nieto Complete modifications for addressing
internal review comments (section 2 to
11)

Document name: 35.6 Second HIDALGO Portal Release and System Operation Page: 2 of 83
eport
Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

e@. HiDALGO

Quality Control

Role Who (Partner short name) Approval Date
Deliverable leader F. Javier Nieto (ATOS) 15/04/2021
Quality manager Marcin Lawenda (PSNC) 15/04/2021
Project Coordinator Francisco Javier Nieto (ATOS) 16/04/2021

D5.6 Second HIDALGO Portal Release and System Operation

Document name: Report Page: 3 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

P~

?@ HiDALGO
Table of Contents

DocumMENt INFOrMAtioNco.veiiiiee et s s s s 2
Table Of CONTENTS.....co.eeiieeee ettt ettt et s e et esmee e se e e emee e e 4
LISt Of TADIES ...ttt st e st e e s e s e s n e s aneas 7
LISt Of FigUIES .ttt eeeeeeeeeeeseaassbabaareeeeseeeeeeessessssssssssssransrasseeeeesennnnnns 8
LISt Of ACTONYIMIS .ttt ettt e eeeeeesesansssssassessreeseeeeessesssssssssrsssnnsreseeesessenns 10
EXECULIVE SUMIMAIY «eeeeiiiiiiiiiieieee et et e e eeesessesssasaasarrreeseeeeessessssssssssssnnesrsseesessenns 11
1 INErOAUCTION ettt st e st e st e e e s e e s e s e e saneas 12
1.1 Purpose of the dOCUMENT.........coiiiiie e e aranees 12
1.2 Relation to other Project WOrK..........eeeeeeeeiiiiiiiiiiiiitreeeeeecce e 12
1.3 Structure of the docuMENtc...oiiiiii e 12

2 Features, Architecture and ROAAMapccoovvviimrriiiiiriieeecc et 14
2.1 Current Features Available ..o 14
2.2 Current Portal Archite@Cturecooeeoiiiiiii e 15
2.3 Portal Roadmap Implementation ... 16

3 ClI/CD INfrastrUCTUIE...cc.eiiiiieeteeeeee ettt sttt s e et e et e s be e e beesareesarees 20
3.1 IMPlEMENLEA SOIULIONcciiiiieieeeee e e 20
3.1.1 CI/CD Infrastructure with Jenkins............cooiiiiiiiineeeeee, 20
3.1.2 Components Monitoring With ZabbiX...........ccccveeiiiiiiiiieieeeecceceee e, 22

3.2 USABE aNd EXAMPIES....c.eeeeeieeeeeeeeee ettt e et e e e e e are e e e e e eaaa e e e e e e annaaeeeenes 24
3.2.1 DEeVElOPMENT PIPEIINESevveeieeeieeeieeeeeeetttee e e e s e seaaas 24
3.2.2 ZabbiX MONITOIINEG ... eveieee ettt e e e e e e e caae e e e e e nnaaeeens 25

4 SINEIE SIBN ON..eeeeeieee ettt e e ee ettt e e e e e ae e e e e e e sbaeeeeeeeasaaaeeeeesssaaeeeeenrraaeeeannnns 29
4.1 Implemented SOIULIONoiiiiee e e e e 29
4.2 AVAIIADIE APIS....c.eiiiieiteeteteeeeet ettt st s 30
4.3 USABE aNd EXAMPIES...cc.eeeeiieeeeeeieeee ettt ettt e et e e e e eeareee e eeeansaeeeeeennnaaeeeenes 31

5 WOrkflows Orchestration.........ccoceivieeieiiiiiiinienieeieeieeeeeeeteete ettt 32
5.1 IMPlEMENLEA SOIULIONccoiiiiieeeeeeeee et e e 32
5.1.1 European Weather CloUd...........ooooiiiiieieiiieeeeeeeeeeee e e e e e 32

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 4 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

P~

é@. HiDALGO

5.1.2 CKAN ClIENT SUPPOIt...coiieeeeteeeteeeeeeee ettt e e e e e e s e s sassarbaraerereeeeeas 33
5.1.3 Implementation of the Apache Spark EXtENSioNcccccvvvvvvvvieereeeeiiiiiiiiiennnnns 34
5.2 AVAIADIE APIS......eeiieitee ettt et et e e s e e e st e e e bae e e aaaaeeaaaas 35
5.3 USABE aNd EXAMPIES....c..eeeeiieeeeeeeeee ettt e ettt e e e aae e e e e e earaae e e e e nnnaaaeeenes 36
(I 1 Y011 oY= 37
6.1 IMPlemMENted SOIULIONcooiiiee e e e 37
6.2 AVAIIADIE APIS.....c.eiiiieiieteeteeteeetet ettt s s e 38
6.3 USABE aNd EXAMPIES....ceeeeeieeeeeeeeee ettt ettt e e etee e e e e aaeee e eeenraeeeeeennnaaeeeenes 39
7 Data Management and CatalogUEcc.uuvieeeieeiriiieeccceee e e 41
7.1 IMPlEMENLEA SOIULIONccooiiiieeeeeeeeee e e e e e 41
7.1.1 200114 o] 1T 41
7.1.2 Choropleth Map fOr CKANvveeiieeeeceeeeeeeeeteree e e e e e e e eeeeeas 41
7.1.3 Datasets SNAMNEuveieeieeiieieee ettt ceetre e e e e eetreeeeeeetaraeeeeeearaeeeeeennnes 42
7.2 AVAIIADIE APIS......eiiiieiteeeeeteeeeetet ettt st s 43
7.3 USAZE aNd EXAMIPIES ..cceieeiieiieeeertrreeeeeeeeeeeeeeeeecnrrrrreeeeeeeeeeseeeeesnnnnsssssaseaaeeeees 44
7.3.1 PO YL O P et ————————————————aaaaaaaees 44
7.3.2 (0 pToY o o1 =1 i a1 177 =] o TR 47
8 VISUANIZATION ... 48
8.1 IMPlEMENTEA SOIULION ...eeeeeeeeeee e et e e e e 48
8.1.1 VISURNIZET ...ttt s 48
8.1.1 COVISE. ...ttt ettt ettt b e bbb bt e be e bt s bt e b s be e s e e b e e sseeaee 48
8.2 AVAILADIE APIS.....ooeeeieeeeee e 49
8.2.1 VISURNIZET ..ottt st 49
8.2.1 COVISE. ...ttt ettt et a e sb e bt e sb e bt e bt e bt et e b e s be e b e s besaseeaee 51
8.3 USAZE AN EXAMIPIES c.cveieiiieiiieieeiiirteeeeeeeeee et eeeeeeerrrrerrereeeeeeeeeessessnssssssssessereeeeens 52
8.3.1 VISURIIZET ..ttt 52
8.3.1 COVISE....nteteeteeteet ettt ettt ettt ettt e sae e bttt e bt et e b e s beebeebesbeenee 53
D SUPPOIT TOOIS ceeeeieiiiiiieeieeiertrree et et eeeeeebbereereeeeeeeeeeseessssssssssrasssesseesesssessssssnsssnssnnes 56
9.1 IMPlEMENLEA SOIULION ...ccciiiiieeeteeeeeee e e e 56
D01 WKttt ettt ettt sttt et eaee 56
Document name: Egb% rtSecond HIDALGO Portal Release and System Operation| ... 5 of 83
Reference: D5.6 |Dissemination: |PU Version: 1.2 |Status: [Final

P~

é@. HiDALGO

9.1.1 ASKDOL ...ttt e st e st e e s be e e s ata e e s aaaeeeaaeeenn 57

9.2 Available APIS aNd USAZE......cccoeeuriieeeeeiiiee ettt eeecteee e e eeraeee e eeeaaaee e e e e nnaaaeaeas 58
9.21 WK ettt ettt e e e st e e e s s st e e e e e s bt e e e e ssasaaaaesenssbaaeeessnassaaeesnns 58
9.2.2 ASKDOL ..ottt et e e e st e e e s e e e st e e e e aaaeeenaaeeenns 58

9.3 USABE aNd EXAMPIES....cc..eeeeiiieeeeeeeee ettt eeetee e e ettt e e e e are e e e e e eareeeeeeeasnaaaeeenes 59
10 Interactive NOTEDOOKS.........coiiiiiiiieeeee et eeare e e aaeeens 62
10.1 Implemented SOIULIONuvviieeeeee et 62
10.2 AVAIlADIE APIS......oiiiiieeeeeee ettt 64
10.3 USage and EXAMIPIES.....ceeeeeeeieeeeeceeeee ettt et e e eearae e e e eeare e e e eeennaaaee e e nnnaaeas 65
11 Frontend and ApPlications GUl.........oooiiiiiiieiiiiiiieeeeeeeeecee et e e e e e e e s ssesasssasanes 68
11.1 Implemented SOIULIONcooiiieeeeeeeeeeeee e e e e e e e 68
11.1.1 Integration of the Portal Components...........coocuvveeeeeeiiiiieeeeeciieeee e 68
11.1.2 Execution of WOrKFIOWS........ccueviiriiniiiiietcectcect ettt 69
11.1.3 User MatChmakKing.......cooocuvvieiiieeieeee ettt e e e e eearreeeeeeannns 70
11.1.4 Usability, Users’ Feedback and Monitoring.........ccueeeeeeeicuveeeeeeciereee e 70
11.2 AVAIADIE APIS......oieee e s s 72
11.3 USAZE aNd EXAMIPIES ...cceeeeiiiieeeerteeeeeeeeee e et eeeeeecnrreereeeeeeeeeeeeeeeennsnnssnaaeeaaeeeeeas 73
11.3.1 USING the BACKEN APloeeeeieeieeeeeeeerteeeeeeeee e eeeecerrnrreeeeeeeeeeeeeseesesnnnnnes 73
11.3.2 The Frontend Web GUI ..ot 74

12 Available INfrastrUCtUres..........oooviiiiieee et 76
12.1 Integration INfrastrUCtUIE......ueeee e it ee e e e e e e e e e e e e nannns 76
12.2 Deployment INfrastrUCTUrEc.ooiieeeeeeeeeeeee e e e ee e e anranees 76
12.3 Training INfrastrUCTUIEeeeeeiieeeeeeeeee e e e e e e e e e e e e eeeeenns 77
13 CONCIUSIONS ..ttt ettt et e et e st e s e s e e s e e s mne e e s e e e mneesnneesmneeennees 79
RETEIEINCES ...ttt ettt e bt e s bt e st e s et e s bt e st e s nee e st e sneeeneens 80
Annex 1: Jenkins Pipeline Definition for Zammad..........ccooovvioiiiiereereeeieeeeeeeeeeevreeeeeeee. 82

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 6 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

é@ HIDALGO
List of Tables

TADIE 1 LISt Of ACIONYIMScevvveeeneeeeeeeeeeeeeeeeeeteeeeeeeee e eeaeeeeessveseessaseseessaesseseeseessassssnsaseseessreesensnsesenssessenrneeesennnns 10
Table 2 Original features proposed for MS4 vs current implementation................ccccoccueeeeccrieeeciieececieeeeeieeeenns 17
Table 3 Original features proposed for MS5 vs current implementation..............cccccveeeeeecieeeveeecreescreeecreescreeennes 18
Table 4: List of courses, course instructors and the objective of the course is detailed here................................. 24
Table 5: Cloudify blueprint for defining the workflow of Apache Spark word count application........................... 35
Table 6: List of courses, course instructors and the objective of the course is detailed here................................. 37
Table 7 Specifications of the three VMs that host our jupyterhub installation................ccceeeveeeeeecieeeceeecieenieeennns 63
Table 8 Details of all the components that make up the jupyterhub installation................c.ccccccoveeeeiieeeccireeecnns 64
Table 9 New Methods Of the BACKENT REST APl.........oocueeueeiereerieeeieeieetestesieesseessesssessesssesssessesssesssesssessesssesssens 73
Table 10 List of VMSs in the Integration INfraStrUCLUIeE...............oooccueeeeeciieeeecieeeeetee e et e eeeteeeeeaaeeeeveeeeeeaaeseennaas 76
Table 11 List of VMSs in the Deployment INfIrASEIUCEUIE...........c.c.oeeeeeveeeeeeeeeeeieeeeeeeeeeeeeeeeeeeteeeeesareeeeeseeeeenreseennns 77

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 7 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

P~

?@ HiDALGO

List of Figures

Figure 1: Current architecture of the Portal _____________ .. 15
Figure 2: Cl/CD Infrastructure with Jenkins and USTUTT Git repository.________________________________ 21
Figure 3: Jenkins credential store to manage the HLRS credentials. __________ 22
Figure 4: Jenkins project is configured to use Git credentials. __________________ o ____ 22
Figure 5: Zabbix monitoring Askbot response time.__ ___ _______ ___ . 23
Figure 6: Jenkins pipeline with six stages for Zammad. ______ _______ .. 25
Figure 7: Adding a new host in Zabbix. ____________ 26
Figure 8: Adding a new web scenario in Zabbix. ___ _____________ . 27
Figure 9: Example of database trigger. __ _ __ 28
Figure 10: Accessing metrics in Zabbix. ______ 28
Figure 11: Keycloak clients configuration. __ __ __ 29
Figure 12: Keycloak OpenlID endpoints. __ _ __ __ 30
Figure 13: Keycloak registration form. __ __ __ 31
Figure 14: Users can self-register by using the “Create new account” button and self-sign-in by using the

“Keycloak SSO Oauth2” button. __ _ 38
Figure 15: Moodle email notification for course registration. _______________ _____ o ____ 39
Figure 16: Home page details the list of available courses and its descriptions.__________________________ 39
Figure 17: Students can self-enrol the course by using the enrolmentkey.___________ 40
Figure 18: Content of the Cloudify and CKAN course. ______________ o ____ 40
Figure 19: Organization list in the CKAN. __ __ 42
Figure 20: Dataset form related to the HiDALGO organization. ______________________________________ 43
Figure 21: Dataset form related to the HiDALGO organization. _________ _____ o ____ 44
Figure 22: The polytope web APl interface - log in form. _______________ o ____ 44
Figure 23: The polytope web APl interface - new polytope request.___________ ________________________ 45
Figure 24: The polytope web APl interface - request list. ____ __ __ ___ o ____ 45
Figure 25: The polytope web APl interface - request details. __ 46
Figure 26: Choropleth Map form view. __ __ __ 47
Figure 27: Example of choropleth map - Internet users per 100 people. _______________________________ 47
Figure 28: Visualizer showing multiple coordinated visualizations ____________________________________ 49
Figure 29: COVISE GUI _ 51
Figure 30: Data selection in Visualizer _ _ _ __ _ ___ 52
Figure 31: Visualizer table view _ _ __ _ 52
Figure 32: Coordinated multiple views in Visualizer____________________ o ____ 53
Figure 33: COVISE web application_ _ _ _ _ 54
Figure 34: COVISE web application showing nitrogen oxide concentration in urbanareas _________________ 54
Figure 35: COVISE web application showing airflow inurbanareas___________________________________ 55
Figure 36: Wiki.js Software Stack. _ __ __ ___ 56
Figure 37 Example of notificationemail _ _ __ ___ _ ___ 58
Figure 38 Example email notification settings ____ _ ______ ____ . 59
Figure 39: Wiki sign-in and user registration page. __ ____ ___ _____ .. 59
Figure 40: Admin Ul for managing Users, Groups and Pagerules. ____________ ___________ _____________ 60
Figure 41: User can edit an existing page. ___ __ ___ 60
Figure 42: Users can create a new page with different editors. Markdown is used as the default editor.______ 61

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 8 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

Figure 43 HIiDALGO's JupyterHub GUI
Figure 44 GUI for viewing, modifying and executing a notebook
Figure 45 Example of accessing HIDALGO CKAN repository through HiDALGO's JupyterHub
Figure 46 Using JupyterHub to retrieve and process weather and climate data
Figure 47 HiDALGO Portal with the Training tool
Figure 48 Implemented structure for execution workflows
Figure 49 Adding an application from the Frontend
Figure 50 Accessing the Orchestrator GUI from the Frontend
Figure 51 Access to CKAN from the Frontend hiding the menu
Figure 52 Architecture of Training Infrastructure nodes

A

é@ HiDALGO

64
64
66
67
68
69
74
75
75
77

Document name:

D5.6 Second HIDALGO Portal Release and System Operation

Report

Page:

9 of 83

Reference:

D5.6

Dissemination:

PU

Version:

1.2

Status:

Final

List of Acronyms

A

e@ HiDALGO

Abbreviation / .
e Description

API Advanced Programming Interface

A&A Authentication and Authorization

CAS Central Authentication Service

Cl/CD Continuous Integration / Continuous Deployment

DC Data Catalogue

DMS Data Management System

DRF Django-Rest-Framework

Dx.y Deliverable number y belonging to WP x

EC European Commission

FAQ Frequently Asked Questions

GDPR General Data Protection Regulation

GUI Graphical User Interface

HCMS Hybrid Multi-Cloud Management System

I[dAM Intelligent Digital Asset Management

MooCs Massive Open Online Courses

MSX Project Milestone X

MVP Minimum viable product

OIDC OpenlID Connect

Q&A Questions and Answers

REST Representational State Transfer

SAML Security Assertion Markup Language

SCM Source Control Management

SEO Search Engine Optimization

SPA Single-Page Applications

SSO Single Sign On

VM Virtual Machine

WCAG Web Content Accessibility Guidelines

WP Work Package

Table 1 List of acronyms

Document name: 35.6 Second HIDALGO Portal Release and System Operation Page: 10 of 83
eport
Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

é@ HiDALGO

Executive Summary

This deliverable presents the second version of the HIDALGO Portal. First of all, it presents the
main features and the current architecture, highlighting the changes with respect to the first
version, which are focused on notebooks, a new frontend, the ticketing system,
documentation and some additional features in tools like the data management and the
orchestrator. Then, it presents the current implementation of the features. Such
implementation is focused on describing what was implemented (including some details
about the tools used), the APIs available (generally, REST APIs and online GUIs) and examples
on how to use the functionalities available. In this concrete version of the Portal, the
deliverable describes the solution for Continuous Integration and Continuous Deployment
(based on Jenkins), highlighting the pipelines used and the monitoring system based on
Zabbix. For the Single-Sign-On (based on Keycloak), the document describes the changes done
in the configuration and the integration with the rest of components. For the workflows
orchestration (based on Croupier), this document addresses the changes done to support
Apache Mesos and Spark, as well as the new ECMWEF Cloud. The training tool (based on
Moodle) includes now more courses and we show some new examples. As the data
management and catalogue (based on CKAN), we address the addition of the Choropleth Map
extension and the data sharing features for CKAN, as well as the new Polytope tool for
collecting data from ECMWF. In the case of visualization (based on Visualizer and COVISE), the
document shows the new features, including new types of diagrams and 3D images that can
be embedded in websites. This document also extends the information about the support
tools (based on Zammad and Askbot). It also introduces the new interactive notebooks feature
(based on Jupyter), so users can now develop some test code and run it easily. The last feature
addressed is the new frontend, as the mean to centralize all the features and to provide some
enhanced functionality for executing applications. Finally, the document describes the
available infrastructure for integration and production deployments, as well as the new
infrastructure available for training, listing the Virtual Machines available and the components
deployed.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 11 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

P~

?@ HiDALGO

1 Introduction

1.1 Purpose of the document

This document aims at describing the implementation of the second release of the HIDALGO
Portal (to be renamed as the Global Challenges Portal), which gives access to HiDALGO
services in a simple way, as a one-stop-shop. Such solution consists of a set of tools covering
several aspects useful for HIDALGO stakeholders, like training, execution of simulations,
visualization of results, user support, data management and even code testing in a simple
way.

The document goes through all the features implemented for the second version, including
the implementation of the frontend (and backend) that puts all of them together, reducing
the complexity to access the HiDALGO services.

Moreover, as a result of the review conducted in September 2020, we have included
additional information about improving the user experience, by monitoring how they use the
frontend and enabling the collection of feedback from their side. The adequate setup,
deployment problems and errors solved in some of the components delayed the release of a
fully functional version of the Portal release. Finally, we have also added additional
information about tools to analyse the frontend usability in a more autonomous way, as well
as a definition of the plans for involving external stakeholders in the testing and usage of the
HiDALGO Portal.

1.2 Relation to other project work

This document is directly related to D5.2[1] and D5.3[2], since they describe the features and
designs to be followed in the Portal implementation, according to the requirements defined
in D6.1[3] and D6.4[4], as well as the first implementation done. It is closely related to D5.4[5],
which provides many details about the tools used for supporting users. It is also related to the
workflows defined in D6.2[6] and WP4 in general (to be supported by the Portal). It is the
second release of the portal development in T5.3, that will be updated in D5.7.

1.3 Structure of the document

This document is structured in 11 major chapters:

Chapter 2 talks about the features that have been implemented in the context of the second
release of the Portal, in line with the designs done previously (D5.2[1] and D5.3[2]).

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 12 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

LGOS
é@ HiDALGO

Chapter 3 to 11 describe how the features were implemented, the supported functionality,
the components used, the APIs available and how these features can be used in the context
of HIDALGO.

Chapter 12 provides a description of the infrastructure in which the components have been
deployed, both for integration and operation, including also information about the training
infrastructure.

Chapter 13 just provides a summary and a set of conclusions obtained after the current
implementation.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 13 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

é@ HiDALGO

2 Features, Architecture and Roadmap

2.1 Current Features Available

The list of desired features and user stories were defined in the context of D5.2[1]. The
features were categorized as application execution, application visualization, interactive code,
data management, data visualization, user community support, user discovery, centralized
user management and other/non-functional aspects.

The progress towards features implementation has been done in several aspects. First of all,
the application execution part has been improved, facilitating the management of applications
and the generation of forms for collecting the inputs, so the execution configuration will be
easier. There are ongoing developments for including integration with the data catalogue in
order to make even easier the selection of input files for the applications. This will be also
linked with the visualization once the results are available, so it will be easier to visualize
results fast, linking to Visualizer and COVISE.

The usage and orchestration of resources has also improved by enhancing the support to the
existing infrastructures (i.e. the HPDA one), starting the access to new infrastructures (like the
one from ECMWF) and even the support to data management.

In the case of data management, Polytope facilitates now the access to ECMWEF data, so
coupling will be easier and more effective. Also, there is more progress with respect to the
features of the data catalogue (i.e. easier sharing of information). Efficient data movement is
a topic that will be addressed in the future as well, since moving very large datasets through
CKAN has shown not to be very efficient.

The area of visualization has been improved with the addition of several features to Visualizer,
so more diagrams are available (and some 3D visualization work is ongoing, for richer diagrams
that could be very useful for scenarios like COVID-19 simulations) and a new version of COVISE
that generates HTML code for the 3D visualization of complex simulations, so now it is possible
to do a much better integration with the Frontend.

The second version of the Portal has also included several tools for enabling users support.
Now HiDALGO can offer a ticketing system, the Questions and Answers (Q&A) forum and a
good documentation through the Wiki.

Finally, the online Notebooks are already available, so stakeholders can create their
prototypes of code online and test it before launching very large executions and integrating
chunks of code in complex software applications. This tool will be further developed in the
future, since there is a lot of room for improvement with more libraries, tools, examples, etc.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 14 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

P~

é@ HiDALGO

2.2 Current Portal Architecture

Taking into account the requested features and the current implementation, we have defined
the architecture that has been followed during the implementation. It is based on the previous
one defined under D5.2[1], with a few modifications related to experience granted during the
previous implementation and to the features that were expected for M24.

Portal Storage

E D \onE
Backend / Wiki
Data Calalogu%
& Frontend E Training
Management
‘ /// \ \
';] @ Questions E
Orchestration Ticketing Syste Visualization Tool & Notebooks
Answers
5[Authentication | ¢
st |

> Authorization *

j—\
Infrastru clure@ @

Monitoring axco

Figure 1: Current architecture of the Portal

In the end, the architecture is very similar. It has two main central points: the Frontend and
the Authentication & Authorization. In that sense, now the architecture is a bit more specific
with respect to differentiating the tools for supporting users and the documentation (the
Ticketing System was added, as well as the Documentation Wiki). It also adds more links with
the Authentication & Authorization (the other components need to check security tokens in
order to enable an authorized access to the functionalities), since this is not centralized
through the Frontend.

Finally, although the Frontend centralizes the access to the rest of functionalities, these are
external tools, and those internal to the Frontend (applications management) are not included
as part of the high-level picture. Instead, we highlight the presence of the backend and the
Portal storage. The reason for the selection of this architecture is because the Frontend

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 15 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

N
é@ HiDALGO

represents the one-stop-shop of HiDALGO, so all the components can be accessed (it embeds
the GUI of other components or it links to them, in case it is not technically feasible).

The Backend takes care of the background connection with components like the Orchestrator,
also guaranteeing that security is addressed, separating the business logic from the GUIs
(Frontend). Although it is possible to access the Orchestrator through its GUI, such possibility
will be disabled for most of the users (only administrators will be able to access to it). Finally,
the Portal Storage takes care of information that the Backend needs to manage (such as the
applications available, instances, etc.).

2.3 Portal Roadmap Implementation

Deliverable D5.2[1] was proposing a roadmap related to the potential user needs. For the first
version, the focus was on enabling the execution of applications, as well as features related
to users’ management and data management (the catalogue, basically). In the case of the
current version, it was important to progress more in previous features and to increase the
support to applications execution, as well as data management and visualization.

Additionally, there was more progress with respect to user support and the usage of
notebooks in order to facilitate code prototyping.

After the implementations, we have re-checked the implementation status with respect to
the roadmap defined initially for MS4.

Main Original Plan for MS4 Current
Component Implementation

Single Sign On | Login once and access all the services Partially Done
All services connected to one account Partially Done
Users to sign up themselves Done
Manage users’ roles and permissions Done

Group permissions and assign users to certain groups | Done

Portal Have a sandbox environment, in order to test changes | Done
Maintenance quickly without risk
Test changes automatically, so new features do not Done
break other parts of the code
Application Execute a pilot and retrieve the results that are Done
Execution interesting to me
Abstract users from the complexity of the underlying | Done
infrastructure
Application Know the status of a running pilot, so users may Done

Status

D5.6 Second HIDALGO Portal Release and System Operation

Report Page: 16 of 83

Document name:

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

N
e@ HiDALGO

Main Original Plan for MS4 Current
Component Implementation
Visualization access partial results if they want to
Check the logs of a pilot execution in order to know Postponed
what happened
Explore and Allow users to explore the data available, so they can | Done
Manage Data | see data that can be used
Create a public dataset and share it with other users, Done
if the user wants to
Create private datasets, so only concrete users (or Done
groups of users) may know about it
Internal Store small input datasets in the platform, so they can | Done
Storage be used for running pilots
External Use datasets stored outside HiDALGO in order to Done
Storage execute pilots
Visualization Visualize datasets, so it is possible to show Done
demonstrations
Visualize datasets with temporal information, so it is Done
possible to understand them
Book Have all documentation organized for users Postponed
Developers can treat documentation as code, so it is Partially Done
easier to keep it updated
Make available information for running pilots and for | Partially Done
using the provided Uls
Support Enable the possibility to keep on discussions through Done
email for general support information
Non- Make the Ul compliant with GDPR, so there will not Partially Done
Functional be any legal issues

Table 2 Original features proposed for MS4 vs current implementation

We have also analysed the roadmap expected for MS5, related to M24, since the Portal was
expected to release additional features. The analysis is in the following table.

Main Original Plan for MS5 Current
Component Implementation

Application Full abstraction of the technical complexity for users Partially Done
Execution that want to run an application
Possibility to easily add new applications and pilotsto | Done
HiDALGO through the Ul
Document name: 35.6 Second HIDALGO Portal Release and System Operation Page: 17 of 83
eport
Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

N
é@ HiDALGO

Main Original Plan for MS5 Current
Component Implementation
Application Visualize workflow execution stages in real time Ongoing
Status
Visualization
Explore and Allow users to access datasets information about Done
Manage Data | format, quality and quantity
Internal Store large input datasets in the platform, so they can | Done
Storage be used for running pilots
External Allow to store produced datasets outside HiDALGO Done
Storage
Visualization Visualize simulations results, so users can validate Done
them
Visualize datasets with geospatial information, so itis | Done
possible to understand them
Visualize 3D information in such a way it can be Done
understood by users
Support Enable the possibility to keep on discussions through Done
an open discussion forum
Provide a FAQ, so repetitive questions can be easily Postponed
answered for stakeholders
Non- Provide a reliable Ul that is accessible whenever it is Postponed
Functional necessary
Provide secure Ul infrastructure, that avoids malicious | Done
attacks

Table 3 Original features proposed for MS5 vs current implementation

Additionally, we have defined a process for opening the Portal to the public, so stakeholders
will be able to use HIDALGO services through this release of the Portal. We plan to organize
internal demonstrations, followed by a beta testing campaign (that will involve also external
stakeholders). After such beta testing campaign, the Portal will be open for the public. The
expected plans are:

e April 2021: Internal demos and testing with HIDALGO partners, collecting feedback
directly and organizing several teleconferences;

e May-July 2021: Beta testing campaign organization and execution (we consider a
collaboration with the ReachOut! project, since the tools provided are useful for
collecting feedback);

Document name:

D5.6 Second HIDALGO Portal Release and System Operation

Report Page:

18 of 83

Reference:

D5.6 |Dissemination: PU Version: |1.2 Status:

Final

https://www.reachout-project.eu/view/Main/

N
é@ HiDALGO

e September 2021: The Portal will be open for all stakeholders and we will invite some
of the members of the Associated Partners programme to use HiDALGO services.

As a result of the internal and beta testing campaigns, we will also test new look and feels for
the Portal, in order to improve usability as much as possible.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 19 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

é@ HiDALGO
3 CI/CD Infrastructure

Software development process follows the various steps from the requirement gathering to
the deployment of the application on the infrastructure, and it can be optimized with the
Continuous Integration (Cl) and Continuous Deployment (CD) methodology to improve the
quality of the product development. Jenkins[7], Git and Ansible are the well-known tools used
for supporting ClI/CD methodology, which is installed as mentioned in D5.3[2] for providing
the experience of seamless integration and deployment within the project. Jenkins is
successfully adopted within the portal development to automate the integration, deployment
and testing of its services by using the Ansible scripts. Ansible is an automatic application
deployment tool, which is used with Jenkins for automating the application deployment in
the cloud infrastructures. Moodle[8], Cloudify[12] and Matchmaking services were already
deployed using Ansible script and defined the Jenkins pipeline for the different steps like
integration, testing and deployment. Jenkins and its current setup satisfied the project goals,
so the changes are only limited with the secure usage of USTUTT Git repository and the
provisioning of new Jenkins pipeline for the portal services (Askbot and Zammad) as detailed
in the rest of this chapter.

3.1 Implemented Solution

3.1.1 CI/CD Infrastructure with Jenkins

The portal development in HiDALGO, as well as the overall chosen deployment strategy,
follow well-known CI/CD patterns and best practices to automate the complete software
development process. This process is detailed in the previous deliverable D5.3[2] by discussing
the selected CI/CD tools, namely Jenkins for automatically building and testing software, and
Ansible for automated deployment of the built artefacts. Jenkins acts as a middle-man
between developers and infrastructures to automate the process of application development
as defined in Jenkins pipelines.

Currently, a single Git deployment account is created for the HiDALGO project, which is
restricted with read-only permissions, and is therefore only used to fetch the source code
during the deployment phase. USTUTT Git is securely integrated with Jenkins by using Jenkins
credential store, which is one improvement from the D5.3[2] in the CI/CD infrastructure as
depicted in Figure 2, which reflects the current workflow.

The specific Jenkins workflow is detailed below; it ranges from building of a Jenkins pipeline
to the deployment of applications in the corresponding Virtual Machine (VM). Each service is
provided with two VMs for integration and deployment, which is detailed in Chapter 13.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 20 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

N
e@ HiDALGO

The portal developer or administrator can submit a manual Web request to build a
new Jenkins pipeline by using the Jenkins Web GUI. After successful submission and
processing of the request, the pipeline is built locally in the Jenkins VM and provides
access to the cloud VMs and the USTUTT Git repositories.

During the build of the Jenkins pipeline, the latest source code of the Ansible script is
downloaded from the USTUTT Git repository for deploying the services in cloud VM.
The Jenkins pipeline is defined in Groovy[10] language, which automates the different
stages of the software development pipeline. Currently, software deployment is
automated with Ansible and the functional tests are conducted with basic shell scripts
to ensure the correctness of installations. Bash scripts and Ansible scripts are run as a
separate command within the Jenkins pipeline to perform the corresponding stages
and provide log details of each stage in the Jenkins GUI.

Ansible connects with the respective cloud VMs remotely and fetches the latest source
code of the corresponding service from USTUTT Git repository for deploying that
service in the cloud VM.

=P Developer & Admin access for integration & deployment of portal
. Enduser Access to HiDALGO Portal

PSNC Continuous Integration (Cl) / Staging
Infrastructure

Jenkins Web Server

Credential Git
Jenkins Store Plugin
project

Run Ansible

Ansible source

Fetch Jenkins
pipeline &

USTUTT Git
Repository

Fetch source
code of specific
service

User accesses portal
by browser (https)

Figure 2: CI/CD Infrastructure with Jenkins and USTUTT Git repository.

USTUTT Git relies on password-based authentication, so a Jenkins project usually includes a

Git URL with the password for fetching the corresponding Git repository. This is improved
right now by enabling the Git plugin and credentials store in the Jenkins configurations to
fetch a Git repository without passing password values in a plain text. Jenkins' credentials
store is designed to store the credentials of external applications securely so that a Jenkins
project or Jenkins pipeline can refer to the credential store instead of providing plain

Document name: 35.6 Second HIDALGO Portal Release and System Operation Page: 21 of 83
eport
Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

N
e@ HiDALGO

credential in a hard-coded manner; the mechanism improves the overall security of
operations. Jenkins credential store is managed by the administrator as shown in Figure 3 for
storing the USTUTT Git credentials. The Jenkins pipeline is configured to use Jenkins credential
store for accessing USTUTT Git SCM (Source Control Manager) as shown in Figure 42.

.ﬂ Credentials

T P Store | Domain ID Name
> { denkins (global) 8081d295-25ec-4ca7-a75(-al0c6d2fe78e Jiey]
a8, 7} enkios (global) 51287408-1db9-4ef9-a3c4-cf0e342b762a [
> 4 Jenkins (global) 040¢1bf9-5502-4860-b3e7-8188011557ba —
a8, 7§ enkins (global) 306697 1c-9291-4€10-bc96-F32bcdBld55 .
lcon: SML

Figure 3: Jenkins credential store to manage the HLRS credentials.
SCM Git v @

Repositories (2]

Repository URL https:/scm‘projectsAhlrs.de/‘ ©
Credentials I - - Add ~

Advanced...

Add Repository

Branches to build n

Branch Specifier (blank for 'any’) */master ©
Add Branch
3\
Repository browser (Auto) v ©
Additional Behaviours Add ~
(2

Script Path Jenkins/JenkinsfileMatchmaking

Figure 4: Jenkins project is configured to use Git credentials.

3.1.2 Components Monitoring with Zabbix

Zabbix is an enterprise-level software designed for real-time monitoring of millions of metrics
collected from tens of thousands of servers, virtual machines and network devices. Although
there are other tools available (like Prometheus, Nagios, etc...), Zabbix was selected because

2 HiDALGO Jenkins weblink -

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 22 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://hidalgo-jenkins.hlrs.de

N
é@ HiDALGO

it provides several required features by default, it is easy to configure and it performs as
needed.
hidalgo-askbot-training: Response time for step "is application alive" of scenario "Askbot-training http".

56ms \

5:50
s
5
5:56
5
0
0.
16:06
6:08
3
6:36
6:38

last min avg max
[l Response time for step "is application alive” of scenaric "Askbot-training htt@abbix{all 6. G2@MM202G0Amis SI/552.02ms 56.4ms

Figure 5: Zabbix monitoring Askbot response time.

Zabbix allows for monitoring any metric that can be obtained from the service, without
interfering it. Moreover, it is possible to install Zabbix client on a service machine to gain
access to internal variables, like CPU and RAM usage or 10 delays.

Zabbix agents support both passive (polling) and active checks (trapping). Zabbix may perform
checks based on an interval, however, it is also possible to schedule specific times for item
polling. The following list of checks is supported by Zabbix agent out of the box:

¢ Network: packets/bytes transferred, errors/dropped packets, collisions

¢ CPU: load average, CPU idle/usage, CPU utilization data per individual process

e Memory: free/used memory, swap/pagefile utilization

e Disk: space free/used, read and write I/0

e Service: process status, process memory usage, service status, DNS resolution, TCP
connectivity, TCP response time

¢ Files: file size/time, file exists, checksum, MD5 hash, RegExp search

* |ogs: text log, Windows eventlog

e Other: system uptime, system time, users connected, performance counter (Windows)

The usage of Zabbix is focused on the monitoring of the Portal components. For each
component deployed, we have been creating the corresponding hosts and metrics in Zabbix,
in such a way it is possible to monitor their availability, response time, resources consumption,
etc... This information may be also useful in order to scale (up or down) the VMs and
containers resources accordingly. The services and items monitored by the time we write this
report are listed in the following table.

Monitored Items

Askbot Download speed
(https://askbot.hidalgo-project.eu/) Last error message

Response code

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 23 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

,“
é@ HiDALGO

CKAN Database status
(ribes-212.man.poznan.pl Services status
ribes-21.man.poznan.pl Webserver status
ribes-135.man.poznan.pl CPU load
rhus-134.man.poznan.pl), Disk utilization

Streaming Disk read/write rates
(http://sophora-145.man.poznan.pl) Number of logged in users

Number of running processes
System boot time

Network speed

Network errors

Available memory

Checksum of /etc/passwd

Zabbix agent availability

Table 4: List of courses, course instructors and the objective of the course is detailed here.

CKAN and Askbot are currently included in Zabbix to monitor its availability and status, which
will be further extended in the project duration to include all other services and portal for
supporting the automatic application monitoring. Moodle, Cloudify, Wiki.js, Zammad,
Interactive notebook, Visualization tools and Portal will be monitored in a single place with
Zabbix to ensure the correct operations of HIDALGO portal by the system administrator.

3.2 Usage and Examples

3.2.1 Development Pipelines

An automatic software development pipeline (or Jenkins pipeline) consists of multiple stages
and each stage runs specific functionalities with multiple tools to automate the software
development activities (i.e. compile, run automated tests, etc). Six stages are defined in the
Jenkins pipeline, which is detailed below.
1. Checkout SCM - Clone the Jenkins pipeline and Ansible scripts to Jenkins workspace
2. Install in the integration infrastructure - Build or install in the integration

environment
3. Integration test - Test the basic functionalities by using the ping and curl commands

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 24 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

N
é@ HiDALGO

4. Manual approval for deployment - Wait for manual approval from developer or
admin

5. Install in the deployment infrastructure - Build or install in the deployment
environment

6. Deployment test - Test the basic functionalities by using the ping and curl commands
Jenkins pipelines were provided for Moodle, Cloudify and Matchmaking services as detailed
in D5.3[2], which is extended with Zammad and Askbot services. Zammad and Askbot are the
newly introduced services for providing customer support ticket and a community forum,
which both are automated through Jenkins pipelines; detailed in Appendix 1. The execution
of the Zammad pipeline is shown in Figure 6%, and it is similar to other pipelines. Ansible script
is used for the installation of service in the integration and deployment VMs. The bash script
is used for testing the installation with ping and curl commands to ensure the verification of
installation.

Stage View
Declarative: Integration - Integration - Aisiaie Production - Production -
Checkout SCM Install Test PP Install Test
566ms 24min 42s 1s 133ms 21s 1s
Aug 13 ‘ l
18:51
BTN B . Y
23
[5] \
- 9min 16s ‘ 98ms 99ms 86ms ‘ 91ms
15
) | |
Jon 23 8min 23s ‘ 110ms 85ms 94ms ‘ 107ms
1504 ‘
ailed| failec vile fail
o |)l
un 23 9min 7s ‘ 84ms 78ms 85ms 109ms

Figure 6: Jenkins pipeline with six stages for Zammad.

3.2.2 Zabbix Monitoring

As Zabbix is set up, it is possible to check out the metrics already in place, but it is also possible
to include new metrics and to monitor new components (seen as ‘hosts’ by Zabbix), as we add
them to the HiDALGO Portal.

Adding a new host

3 HIDALGO Jenkins installation -

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 25 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://hidalgo-jenkins.hlrs.de/job/zammad/

A

é@ HiDALGO

It is necessary to first point to the service that is going to be monitored. In ‘Hosts’ submenu
under ‘Configuration’ tab, click ‘Create host’ button.

The required fields are:
e Host name - name displayed in Zabbix
e Groups - a group the server belongs to (as configured before)

e Interfaces - IP or DNS address with port

Hosts

Host Templates IPMI Tags Macros Inventory Encryption

*Host name
Visible name
* Groups Select
“ At least one interface must exist
Agent interfaces IP address DNS name Connect to Port Default
127.0.0.1 & ovs || 10050 ® Remove
Add
SNMP interfaces Add
JMX interfaces Add
IPMI interfaces Add

Description

Monitored by proxy | (no proxy) |v

Enabled |v

Cancel

Figure 7: Adding a new host in Zabbix.

Adding a web scenario

Next important step is specifying what metrics should be collected, e.g. code returned from
the service. On the Host properties screen, access the ‘Web scenarios’ tab and click ‘Create
web scenario’ button.

In ‘Steps’ tab add new step and provide following info:

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 26 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

e Name - scenario identification.

e Application - previously defined application

e Update interval - time between checks (e.g. 1 minute)
e Agent - Zabbix

¢ Enabled - Yes

Scenario Steps Authentication

*Name | Askbot-training http
Application | Askbot-training application +
New application
* Update interval | 1m
* Attempts 1
Agent | Zabbix v
HTTP proxy

Variables Name Value

Add

Headers Name Value

Add

Enabled

A

e@ HiDALGO

v
l Clone] I Clear history and irends lZLDglelt% ﬁ] L '?ﬂﬂ‘i%la Zabbix SIA

Figure 8: Adding a new web scenario in Zabbix.

Configuring Zabbix Agent

In order to monitor more inaccessible internal metric it is necessary to first install Zabbix Agent

on the client machine:

sudo apt install zabbix-agent.

Now it is possible to add to the host new items that utilize Agent’s capabilities.

Document name:
Report

D5.6 Second HIDALGO Portal Release and System Operation

Page:

27 of 83

Reference: D5.6 |Dissemination: PU Version:

1.2

Status:

Final

*Name | Service postgres is not alive

Operational data

Severity Not classified

* Expression {CEEN Backend:ckan.postgres.last () }=0

Expression constructor

OK event generation SHIE=E0) Recovery expression None

PROBLEM event generation mode Multiple

OK event closes BURVGERERN All problems if tag values match

Allow manual close
URL

Description

Enabled v

‘ Clone ‘ ‘ Delete ‘ ‘ Cancel ’

Figure 9: Example of database trigger.

Testing and viewing data

A

Information Warning Average - Disaster

e@ HiDALGO

Add

After the service has been set up, it is now be monitored according to the items/scenarios. It

takes about 5 minutes to gather enough data for graphs to appear.

In order to view the data access the ‘Monitoring’ menu and click on the ‘Latest data’ option.

Name a Last check Last value Change
Askbot-training application (7 Items)
Download speed for scenario "Askbot-training http" 2020-07-08 16:49:53 3.17 KBps -63 Bps Graph
Download speed for step "is application alive” of scenario "Askbot-training htip”. 2020-07-08 16:49:53 3.17 KBps -63 Bps Graph
Failed step of scenario "Askbot-training http". 2020-07-08 16:49:53 1 Graph
is application alive Graph
Last error message of scenario "Askbot-training http" 2020-07-08 16:49:53 response code "301" did ... History
Response code for step "is application alive” of scenario "Askbot-training http". 2020-07-08 16:49:53 301 Graph
Response time for step "is application alive” of scenario "Askbot-training hitp". 2020-07-08 16:49:53 52.4ms +0.9ms Graph
Figure 10: Accessing metrics in Zabbix.
D5.6 Second HIDALGO Portal Release and System Operation
Document name: Y P Page: 28 of 83
Report
Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

P~

?@ HIDALGO
4 Single Sign On

4.1 Implemented Solution

As already explained in D5.3[2], Keycloak[11] was selected as the solution for Identity
Management (IDM) and Single Sign On (SSO) solution. At this stage, two instances of Keycloak
are available and connected to several components of the Portal. Keycloak supports several
protocols in order to enable SSO and, in this case, we are using OAuth2 (see standards like
OpenlID[14] and SAML[13]) as the main way to do it. Central Authentication Service (CAS)[15]
has been considered for components like Moodle, but for the moment, we are using the same
solution for all the components, in order to ease maintenance.

m Clients

Realm Settings

Lo Client ID Enabled Base URL Actions

Client Scopes t True Edit Export Delete
Role admin-c True Edit Export Delete
Edit Export Delete
Identity Providers
True Edit Export Delete
Ussghedaaton True Edit Export Delete
Authentication e s Edit Export Delete
Edit Export Delete
True Edit Export Delete
Edit Export Delete
True Edit Export Delete
Edit Export Delete
True Edit Export Delete
Edit Export Delete
Import security-admin-console True auth/admin/Hidalgo/console/index.htm Edit Export Delete
Export True Edit Export Delete
True Edit Export Delete

Edit Export Delete

Figure 11: Keycloak clients configuration.

One realm has been created and the list of clients is configured for such realm, according to
the components to be integrated. Up to now, the components integrated with the SSO are:
frontend and backend of the Portal, Moodle, CKAN, Jupyter notebooks and Zammad. The
initial configuration is already available for more components of the Portal, although such
integration is ongoing, since in some cases is more complicated to address, or it cannot be
addressed directly through the GUI, requiring a backend that takes care of the interaction (as
in the case of the Orchestrator).

As already explained in D5.3[2], each time a user needs to be authenticated, the components
contact Keycloak. If the user already logged in and has been granted access to the component,
Keycloak will provide the corresponding security token. Otherwise, Keycloak is the one
identifying the user.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 29 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

LGOS
é@ HiDALGO

In order to facilitate the usage by stakeholders, the configuration is being changed in order to
enable self-registration of the users. This requires configuring a SMTP server, since it is
necessary to activate the email verification feature, for security reasons. Additionally, the
team is looking at the way to deal with temporary accounts that would be provided to
stakeholders, so they can be disabled when certain period expires. This feature will require
additional functionality in the frontend side in order to check users’ profiles.

The list of software components used is the following:

¢ Keycloak, version 12.04*

* Nginx Proxy, version 1.19.3°

e Letsencrypt Nginx Companion, version 2.1.0°
® Postgres Database, version 9.4.267

4.2 Available APIs

As explained in D5.3, Keycloak follows several standards that have to do with IDM and SSO.
The most important interface in use is the OpenlD[14] endpoints, which enable SSO through
OAuth2. Additionally, SAML2.0[13] is available, for identity provider metadata.

“https://hidalgo-idm.hirs.de/auth/realms/Hidalgo"

zation_endpoint: hirs.de/auth/realms/Hidalgo/protocol/openid-connect/auth”

Hidalgo/protocol/openid-conne

w token_endpoint:

» token_introspection_endpoint: algo/protocol/openid-connect/token/introspect™

o_endpoint: Lgo-idm.hirs.de/auth Hidalgo/protocol/openid-connect/userinfo™

n_endpoint: hidalgo-idm.hirs.de/auth/real algo/protocal /openid-connect/Logout"

"https://hidalgo-idm. hirs.de/auth/realms/Hidalgo/protocol /openid-connect/certs”

"https://hidalgo-idm.hirs.de/auth/realms/Hidalgo/protocol/openid-connect/Login-status-iframe.html”

"authorization_code”

"password”

"client_credentials”

:H "code"
1:

PR ST Y

Figure 12: Keycloak OpenlID endpoints.

Keycloak also has a web console which allows to manage realms, clients, users, configuration,
etc... This web interface also includes the forms for doing login and registration activities,
which are exposed by Keycloak.

4 https://hub.docker.com/r/jboss/keycloak

5 https://hub.docker.com/r/jwilder/nginx-proxy

¢ https://hub.docker.com/r/jrcs/letsencrypt-nginx-proxy-companion

7 https://hub.docker.com/_/postgres?tab=description&page=1&name=9.4

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 30 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

@ HiDALGO
4.3 Usage and Examples

Deliverable D5.3[2] already described the main feature related to Keycloak and how to use
them. As shown in Figure 11, the Keycloak dashboard is the place to configure the realm
characteristics, as well as the clients, users and other aspects (groups, federations, etc.). In
the case of HiDALGO, the configuration was focused on the clients part, since each component
requires to configure a client.

Additionally, we recently changed the login configuration, so now users are allowed to self-
register, as a way to facilitate the involvement of stakeholders. Therefore, now the login form
has changed and, when selecting the ‘Register’ option, the following form has to be
completed.

Register

Figure 13: Keycloak registration form.

After the form completion, the user receives an email to activate the account and it will be
possible to make login with the new user.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 31 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

P~

é@. HiDALGO

5 Workflows Orchestration

5.1 Implemented Solution

5.1.1 European Weather Cloud

As part of the coupling of ECWMF weather data for the UAP and human migration pilots, the
HIiDALGO orchestrator aims to access cloud resources hosted by the ECWMF European
Weather Cloud (EWCloud) to perform data retrieval and post-processing.

This integration with EWCloud aims at achieving the following:

® Reducing the size of the data that will be transferred to the pilot applications
¢ Allowing familiarisation with ECMWF data and its processing
e Offering an extendible platform for future applications

The remainder of this section gives a general overview of EWCloud, its capabilities and a status
of the integration.

European Weather Cloud

In December 2018, ECMWF and EUMETSAT joined forces to set up a federated Cloud
Computing infrastructure focused on meteorological data. The vision is to establish a
“European Weather Cloud” to serve the European Meteorological Infrastructure and its users.
ECMWE is currently running a pilot phase of two years, started in January 2019. EWCloud
revolves around the concept of “users-to-the data”, by providing to users transparent access
to services, infrastructure and data holdings based on agreed federation principles. Federation
in the EWCloud is a loose coupling and is implemented via the following elements:

e Common web presence
A single website marking the web presence of the “European Weather Cloud”. The website
purpose is for communication and public relations.

e Hybrid Cloud Management System (HCMS)

The Hybrid Multi-Cloud Management System (HCMS) acts as an orchestration layer that
runs on top of cloud infrastructures and abstracts away the heterogeneity of the
underlying cloud technology (VMware, OpenStack or other) and geographical distribution
of infrastructures from the end-users perspective. The HCMS allows the creation and
management of processing environments (i.e. Virtual Machines, Kubernetes deployments)
in any of the underlying infrastructures. A COTS technology called Morpheus is used as
HCMS.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 32 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

LGOS
@ HiDALGO

e Harmonised Data Access API

ECMWEF data holdings (MARS, C3S, CAMS, etc.) are accessible for downloading data, using
the existing APIs, both via the Internet and via EWCloud. The preferred option is, however,
to reduce as much as possible the transfer of data via the Internet and, instead, perform
computation close to the data by relying on a higher local network speed. This is the main
motivation for the integration of EWCloud with the Hidalgo orchestrator Cloudify
Croupier.

EWCloud-Cloudify Croupier Integration

Different level of integrations can be conceived between Cloudify Croupier and EWCloud. In
the current approach, ECMWF has setup a number of Virtual Machines (VMs) with the post-
processing capabilities required by the pilot applications. The intention is to allow Cloudify to
connect to these VMs via SSH and execute the algorithm required by the workflow.
Preliminary tests have been successfully conducted but a full integration has not been
achieved yet.

5.1.2 CKAN Client Support

As a way to ease data management tasks, the Croupier Orchestrator[18] now allows for the
definition of operations for data movement and publication, embedded in the tasks definition.
In previous versions of the orchestrator, it was necessary to create a new ‘hpc.nodes.Job’ task
of type ‘SHELL’, which was running scripts accessing the CKAN Client. Although the scripts
have been improved, now it is also possible to have a normal HPC task (a ‘croupier.nodes.Job’)
which, at the end of the task definition, includes a new option called ‘data_mover_options’,
that specifies the configuration of data movement.

The current version of the Orchestrator now supports data movement with GridFTP (as a
result of the collaboration with the EUXDAT project), thanks to this ‘data_mover_options’ tag,
and it is supporting more and more features of the data movement through CKAN, in line with
the features provided by the CKAN Client. It is possible to use data publication in CKAN thanks
to this new option, and more developments are done in the scripts, so it will be possible to
move datasets with a concrete identifier or name.

The plan for the near future is to combine the usage of GridFTP and CKAN client depending
on the circumstances (the Orchestrator will make a choice) and some monitoring information
could be extracted from data movement tasks. Also, we will analyse how to support solutions
like Polytope (see Section 7), directly from the Orchestrator.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 33 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

LGOS
é@. HiDALGO

5.1.3 Implementation of the Apache Spark Extension

Croupier is the plugin developed by ATOS for managing HPC applications in CoeGSS project,
which is further enhanced together with USTUTT in HiDALGO for executing Spark applications
in HPDA infrastructures. Croupier Apache Spark extension is based on the Apache Mesos REST
API v1.0[19] and the application submission command (spark-submit) for managing the
execution of Spark applications in USTUTT HPDA infrastructure. A potential target HPDA
infrastructure has therefore to support both the Apache Mesos REST API version 1.0 and
spark-submit command to interface croupier plugin with the infrastructure.

USTUTT offers access to a Cray Urika GX system within the project to execute Apache Spark
applications (cf. Deliverable D5.1[20] on page 12). This system is used for testing the Croupier
Apache Spark extension. As a first proof-of-concept, the well-known Apache Spark word count
example was successfully deployed through the plugin onto USTUTT's infrastructure.

The Urban Air Pollution pilot intends to make significant use of Apache Spark in their
workflow. Thus, this pilot is considered as the first real-world application to test and evaluate
the developed Apache Spark extensions in croupier plugin. We will report on the findings in
the next iteration of this deliverable.

The Croupier plugin manages the operations of job submission, monitoring and cancelling of
jobs as mentioned below:

* There is no generic REST API for submitting jobs in Mesos scheduler, and it depends
on the framework used by the application. Spark application is initially supported with
the spark-submit command to submit jobs in batch mode, and the command manages
job submission with Mesos scheduler. In the future, if there should be the requirement
to support a wider range of HPDA frameworks (e.g. TensorFlow), then the platform
has to provide the commands or procedures to submit jobs in batch mode.

e Apache Mesos provides a REST APl to get the status of an application by using
/framework API. The APl is used for sending the application status details to Cloudify
web GUI through the Croupier plugin.

e Apache Mesos provides a REST API to cancel the application during the application
execution by using /teardown API. The API is used for cancelling the application when
the user requests the cancellation from the Cloudify web GUI.

wordcount job: # Spark Wordcount Applications
type: croupier.nodes.Job
properties:
job options:
type: 'SPARK'
pre: # Run commands before submitting applications
- 'module load tools/proxy'
application: {get input: job app full path} # Full path of *.jar or *.py
application_ params: # New features to provide application parameters
- {get_input: app_ip forest depth}
- {get_input: app_ip forest trees}
- {get input: app ip training ratio}

D5.6 Second HIDALGO Portal Release and System Operation

Report Page: 34 of 83

Document name:

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

P~

?@ HiDALGO

total executor cores: {get input: job executor cores}# Nb of executor cores
executor_memory: {get_input: job_executor memory} # Size of executor memory
driver cores: {get_input: job_driver cores } # Size of driver cores
driver memory: {get input: job driver memory } # Size of driver memory
post: # Run commands after executing applications
- 'module unload tools/proxy'
deployment:
bootstrap: 'scripts/download input.sh' # Prologue scripts to download input files
revert: 'scripts/upload output.sh' # Epilogue scripts to upload output files
inputs:
- { get _secret: hidalgo ckan key } # CKAN Key
- { get_input: upload file location } # Upload file location
- { get input: download file location } # Download file location

Table 5: Cloudify blueprint for defining the workflow of Apache Spark word count application.

Table 5 provides the generic Cloudify blueprint for defining the workflow of word count
example as an Apache Spark application by using the following options (features are
highlighted in bold with inline comments prefixed by #):

1. application: This option provides the full path to the Apache Spark application.
Apache Spark applications are supported either as a compiled JAR or Python file.

2. class_ name: By providing a JAR file as a full path, then the class name is required
to be provided as well in order to invoke an application.

3. application params: This optional parameter allows to define additional
application parameters, which will be passed as arguments to the application.

4. total executor cores: The specified number of executor cores are used to
reserve the required amount of computing resources for execution.

5. executor memory: Spark application submitted with the size of executor memory
specified here.

6. driver cores: Spark application submitted with the number of driver cores
specified here.

7. driver memory: Spark application submitted with the size of driver memory
specified here.

The Croupier Spark extension is available as a fork of the official Croupier plugin from ATOS
Github repository, and it has been merged with the official ATOS repository after completing
unit tests and code review. The documentation of Croupier will be updated accordingly in
order to provide details to the usage of the Apache Spark extension so that pilots can update
their blueprints according to their data analytics workflow needs.

5.2 Available APIs

The APIs of the Orchestrator component have not changed with respect to the ones presented
in D5.3 (section 5.2). Since the API is the standard Cloudify interface, there are no changes at
all. Also, the blueprint included as example (in Annex 3 of D5.3) remains as a valid example on
how to run an example.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 35 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

LGOS
é@ HiDALGO

As a new development, the backend of the Portal is now able to connect to the Orchestrator
through a specific client, so the frontend can be used now to run instances of workflows. Such
specific interface is shown in section 11.

5.3 Usage and Examples

The Orchestrator can be used directly through its own web interface, which was already
shown in the deliverable D5.3[2]. Table 5 shows an example of a blueprint for running an
application in a platform with Apache Spark. This example can be executed through the
command line interface, through the Orchestrator GUI or through the Frontend.

The new Frontend features and the implemented backend are described in Section 11 of this
document. Such section also shows examples for running applications through the
Orchestrator using the new Frontend.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 36 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

é@ HIDALGO
6 Training

6.1 Implemented Solution

Training is one of the key services of the HIDALGO portal. It is detailed in Deliverable D5.3[2]
together with the architecture and installation of the Moodle[8] application onto cloud VMs.
The service is further enhanced to support the features as per the needs of the project, which
is detailed below:

1. A self sign-in feature is enabled with email verification, so the user can register to
Moodle and verify their registration by a verification-link to improve security in the
user registration.

2. An official HIDALGO email () is set it up for sending email
notifications through Moodle. That enables us to send HiDALGO portal users course
notifications from an official email to ensure the authenticity of the communication.

3. A course instructor can upload the file with the size limit of up to 15MB, so large files
can be shared in the course instead of default 2MB.

The following HiDALGO courses are created and maintained by the course instructors as
mentioned in Table 6, and it is accessible by students after self-enrolling.

Course Name Purpose & Description Course
Instructor
Cloudify & CKAN Explains the Cloudify and CKAN tools. The main| USTUTT and
objective of the course is to define the workflow of PSNC

GSS or HPC applications in Cloudify.

HiDALGO and its Introduce available HiDALGO services. PSNC
Services
Migration Pilot Tools used for developing the Migration application BUL

(Modelling and Tools) with Python3.

HPC usage tutorial Submit HPC applications using Slurm batch PSNC
scheduler and MPI commands.

Social Networks Pilot Introduce the Social networks application, PLUS
motivation and its workflow.

Urban Air Pollution Introduce the UAP application, motivation and its SZE
(UAPv1.0) QuickStart workflow.
Tutorial for Beginner

Table 6: List of courses, course instructors and the objective of the course is detailed here.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 37 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

mailto:no-reply@hidalgo-project.eu

A

e@ HiDALGO

6.2 Available APIs

The Moodle is a standard web application with a GUI interface, which is detailed in the
previous Deliverable D5.3[2] to provide the base platform for offering HiDALGO online
courses. The system is enhanced with the new functionalities to support self-sign-in and
single-sign-on authentication as shown in Figure 14. OAuth2 protocol is configured in the
system to support the self-sign-on authentication and the feasibility to support the integration
with the portal. The system is also configured to support automatic E-mail notification, so the
user can get the regular notification through E-mail as shown in Figure 15. The system
supports automatic E-mail notification for the self-help functionalities activities such as the
user activation and course registration to avoid any manual intervention.

@ HIDALGO

Forgotten your username or password?

admin
Cookies must be enabled in your browser @
........................

Some courses may allow guest access

[J Remember username -
Log in as a guest

: | Keycloak SSO OAuth2

Is this your first time here?

For full access to this site, you first need to create an account.

Create new account

Figure 14: Users can self-register by using the “Create new account” button and self-sign-in by using the
“Keycloak SSO Oauth2” button.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 38 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

HiDALGO Moodle Production Welcome to Urban Air Pollution (UAPv1.0) QuickStart Tutorial for
Beginner Inbox x

2 Do not reply to this email (via HIDALGO Training) <no-reply@hidalgo-project.eu>

tome ~

Welcome to Urban Air Pollution (UAPv1.0) QuickStart Tutorial for Beginner!

If you have not done so already, you should edit your profile page so that we can learn more about you:

https://moodle. hidalgo-project.eu/user/view.php?id=8&course=2

Figure 15: Moodle email notification for course registration.

6.3 Usage and Examples

Fri, Jul 10, 437 PM

e@ HiDALGO

w

The service is mainly hosted for sharing the training materials with the end-users, so the
different courses are created for disseminating the course materials within HiDALGO

community. Figure 16 provides the list of available course in the moodle for self-study and it

is currently restricted with the self-enrolment key for the course registration as shown in

Figure 19. Courses are organized with different topics to share the slides, documents and ZIP

files in a central location as shown in Figure 18.

Q HIDALGO

Figure 16: Home page details the list of available courses and its descriptions.

Document name:

Report

D5.6 Second HIDALGO Portal Release and System Operation

Page:

39 of 83

Reference:

D5.6

Dissemination:

PU

Version:

1.2

Status:

Final

Cloudify and CKAN

Dashboard [Courses / Choucify and CKAN ¢ Ennol mee in this course | Enrciment aptions

Enrolment options

» Self enrolment (Student)

Enagiengns iy

@ HiDALGO

In this course, you will learn the introduction of Cloudify and CKAN tools,

o Cloudify & the

IALGE 10 MAnaGE e WorkNow of applications
minology

“ In e barsic HelkoWorkd Diueprin
» CIAN is the dass management oo

o numming NPT Helho Warld appication in HPC cluster
nanaging applcations’ imgen and cutput cat

o CIKAN web options 10 tranafer files using GUI

& CIOAM REST AP 1o transter files using CLI

Figure 17: Students can self-enrol the course by using the enrolment key.

Cloudify and CKAN

Dashboard / My courses / Cloudify and CKAN

‘\-a Announcements

1. Cloudify

f MPI HelloWorld Blueprint

ﬁ 1.2. Blueprint of Urban Air Pollution

2. CKAN

] 2.1. CKAN Data Management

Your progress @

Figure 18: Content of the Cloudify and CKAN course.

Document name: 35.6 Second HIDALGO Portal Release and System Operation Page: 40 of 83
eport
Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

P~

?@ HiDALGO

/ Data Management and Catalogue

7.1 Implemented Solution

7.1.1 Polytope

We have implemented a polytope web API interface and polytope downloader tool that
facilitate the collection of data from ECMWEF, served through the Climate Data Store (CDS).
The web interface is a standalone application that allows users to:

e Create a polytope data request
¢ Browse the requests done
¢ Download output data from the polytope servers

To get started you must have a valid API key from ECMWEF. In the web interface you should
log in with your email and API key. Once this is configured, it is possible to use the forms in
order to specify the data to download and to check the historical data about the requests
done so far. It is important to clarify that it is a kind of intermediate system so, first, users do
the request (to the MARS system) and, then, they have to access the lists of requests and they
will be able to download the data once the request is finished.

Additionally, the users can also make use of the polytope downloader, which is a Python
script for download data, but through a command line. The polytope-downloader input
parameters are the following:

e --auth - auth data (email:key)
® --req-requestid
e --path - output file path

7.1.2 Choropleth Map for CKAN

We have installed and configured the CKAN[9] extension named ckanext-mapviews. This
extension adds regular and choropleth maps to CKAN, using the new Resource View being
developed on CKAN's master branch (currently unreleased). The current version of CKAN
deployed in HIDALGO is v2.9.2.

To start creating choropleth maps, you need two things: the data you want to plot, and a
GeoJSON defining the geographical regions you'd like to plot it. The data itself needs to be in
a resource inside the DataStore, and the map needs to be in the same domain as CKAN itself
(to avoid same-origin policy issues). The easiest way to do so is to upload the GeoJSON as
another resource.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 41 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

N
é@ HiDALGO

Each GeoJSON feature needs a property related to a column in the data. It can be an id, name,
or anythings that uniquely identifies that feature, so we know where to plot the data.

7.1.3 Datasets Sharing

Organizations are the primary way to control who can see, create and update datasets in
CKAN. Each dataset can belong to a single organization, and each organization controls access
to its datasets.

Datasets can be marked as public or private. Public datasets are visible to everyone. Private
datasets can only be seen by logged-in users who are members of the dataset’s organization.
Private datasets are not shown in dataset searches unless the logged in user (or the user
identified via an API key) has permission to access them.

After some time of using the CKAN platform, we noticed that we needed the functionality of
sharing datasets between users from different organizations.

3 Datasets

ATOS Brunel ECMWF
ATOS 5 Datasets 3 Datasets

1 Dataset
HLRS

8 Datasets
ICCS KNOW
MOON 1 Dataset) Dataset

1 Dataset
R TR
CPINC

Social Network Pilot

8 Datasets

PSNC SZE
D. 15 Datasets

Figure 19: Organization list in the CKAN.

We have created a dedicated organization named HiDALGO. Each user of the HiDALGO project
belongs to his basic organization (e.g. PSNC, SZE, etc.) and additionally to the HiDALGO
organization. As a result, each private dataset assigned to the HIDALGO organization is visible
to all users of the HiDALGO project.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 42 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

é@ HiDALGO

Title:

tweet features from the five topics

URL: hidalgo1.man.poznan.pl/dataset/tweet-features-from-the-fpoe-dataset Edit

Description:

You can use Markdown formatting here

Tags:

Organization:

HIDALGO v

Visibility:

Private

Figure 20: Dataset form related to the HiDALGO organization.

7.2 Available APIs

Every day, ECMWF produces ~120TiB of raw weather data, represented as a six-dimensional
collections. The raw data is also stored in the world's largest meteorological archive (MARS),
currently holding over 300 PiB of primary data - which is also served around the world on
demand.

As explained before, ECMWF has developed the Polytope, an open-source service which
allows users to request arbitrary n-dimensional stencils ("polytopes") of data from highly-
structured n-dimensional datasets. The data extraction is performed server-side (collocated
with the data), allowing for large data reduction prior to transmission and less complexity for
the user.

The polytope APl is located at http://polytope.ecmwf.int/openapi/ and allows you to:

e Authorize

® Get collections

* Download data

* Get specific request or list of requests on collection

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 43 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

@ HiDALGO

¢ Delete request
e Test if the server is alive
e Get user information

polytope.ecmwf.int/openapi Client Workflow
m /api/vl/auth/keys 4 POST /api/vl/requestes/hidalgo-mars ot
m /api/vl/collections - —

with ‘location’ header "

m /api/vl/downloads/{request_id} GET <location> _

/api/vl/requests 202 ACCEPTED
) with ‘status: gueued”

v

N

IEED] /opi/vi/requests/{collection_or_request_id}

GET <location> - .
>
m /api/vl/requests/{collection_or_request_id} . 303 SEE OTHER U
€
b] e
m /api/vl/requests/{collection_or_request_id} with ‘location” header

/api/vl/test ‘ GET <location> ;

m /api/vl/user 200 0K

DATA T

A
v
E)

Figure 21: Dataset form related to the HIiDALGO organization.

Additionally, a web interface has been created, in order to facilitate the way to access to the
features of Polytope. The next section shows such GUI and how it should be used.

7.3 Usage and Examples

7.3.1 Polytope

To get started with the online client, you must have a valid API key from ECMWEF. In the web
interface you should log in with your email and API key.

@ H i DALGO polytope client - Gp[efnlrcgls

home new request my requests about

Log in

Email: email .

CDS API KEV: key *

Figure 22: The polytope web API interface - log in form.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 44 of 83

Reference: D5.6 |Dissemination: PU Version: (1.2 Status: Final

N
e@. HiDALGO

In the “new request” form user should provide several parameters related with ECMWF API.
There is a dedicated collection named “hidalgo-mars” to the HiDALGO users.

@ L] sl Bl (ooernics
home my requests about logout

Example request

Collection: hidalgo-mars o] *
Class: od *
Date: 20200101 x
Expver: 1 g
Stream: oper *
Time: 00 &
Step: 0 *

Levtype: pl
Levelist: 500
Param: t >
Type: fc
Copyright © 2020 PSNC

Figure 23: The polytope web API interface - new polytope request.

@ HiDALGO polytope client - Gpe i
home new request about logout

id collection date status action
download
3fefo02¢c-abe7-41cf-9572-ea5f4827675d hidalgo-mars 1589293437.620322 processed delete
show details
a77cdb2c-8e7e-4660-ael11-dc2ala6c096d hidalgo-mars 1589354200.097341 failed delete

show details

Figure 24: The polytope web API interface - request list.

From the “my requests” list user have ability to:

¢ Download the output data from the polytope servers
* Browse request details
e Delete request

D5.6 Second HIDALGO Portal Release and System Operation

Report Page: 45 of 83

Document name:

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

@ HiDALGQ polytope client

home new request about logout

id

timestamp

3f6f902c-abe7-41cf-9572-ea5f4827675d

Bl Cooerncs

1589293437.620322

A

e@ HiDALGO

parameters {'class': 'od', 'date': '20200101', 'expver': '1', 'stream': 'oper’, 'time": '00', 'step": '0', 'levtype': 'pl', 'levelist': '500', 'param': 't', 'type': 'fc'}

status

url

processed

download

Figure 25: The polytope web API interface - request details.

As for the Polytope downloader, an example (and its results) would be the following:

polytope-downloader.py --auth "email:key" --req "regid"
--path “download/file.grib”
>Directory download already exists

>Found request:
>Found request:

reqid;
reqgid;

Status:
Status:

processing
processed

>Data saved to download/file.grib

Finally, in the case of the REST API, it is also possible to run HTTP calls to the API. As an

example, this is a request to execute the method to get collections:

curl -X GET

"http://polytope.ecmwf.int/api/vl/collections"
"accept: application/json" -H

email:apiKey"

Response status:
Response body:

{

"message":
" debug " ,
"dummy",

[

"ecmwf-mars",
"fdb-test",
"hidalgo-mars",

"lexis-mars",
"mars-test",
"webmars-test"

200

"Authorization:

-H

Document name:

D5.6 Second HIDALGO Portal Release and System Operation

Report

Page:

46 of 83

Reference:

D5.6

Dissemination:

PU

Version:

1.2

Status:

Final

@ HiDALGO

7.3.2 Choropleth Map

Go to the data file's manage resource page and create a new Choropleth Map view. You'll see
a form with a few fields. Enter a title, leave the description empty (if you want). Now we need
to add the GeoJSON. Select in the GeoJSON Resource field the resource you created.

* Title:

choropleth map

Description:

eg. Information about my view

‘You can use Markdown formatting here

Filters:

Add Filter

* GeoJSON Resource:

<

ne_110m_admin_0_countries.geojson

* GeoJSON Key Field:

WB_A3

Figure 26: Choropleth Map form view.

0.80-14.40
[14402800
28.00-41.60
B 4180-5520
B 55206880
W 6880-82.40 4
W s2.40+

No data 3

Leaflet | © OpensStreetMap contributors

Figure 27: Example of choropleth map - Internet users per 100 people.

D5.6 Second HIDALGO Portal Release and System Operation Page: 47 of 83

Document name:
Report

Reference: D5.6 |Dissemination: PU Version: (1.2 Status: Final

P~

é@. HiDALGO

8 Visualization

8.1 Implemented Solution

In HIDALGO two visualization tools with different functionalities are provided and are
accessible within the HIDALGO portal. In order to visualise data interactively in a dashboard
the visualization tool Visualizer, developed by Know-Center, is used. Three-dimensional
simulation data is visualized in the HLRS software COVISE. Both tools keep under development
under WP3 and they are described separately in the following sections.

8.1.1 Visualizer

Visualizer is a web-based visualization tool enabling users to investigate large tabular data
sets. It allows users to easily configure new dashboards with a few clicks. Dashboards can be
shared with other users or deployed to any website using I-Frames. Using Visualizer, users
have full control over data security and privacy, since all interaction remain on the client,
nothing is shared with the server unless dashboard sharing and collaborative data analysis is
enabled. The dashboard supports users in selecting suitable visualizations depending on the
selected data fields using a rule-based recommender.

Initially, users need to select the data set they want to investigate. This is either done by
selecting local files, defining an URL to a remote data set or by pushing interesting data sets
to the dashboard if it is integrated within another website.

After selecting one or multiple data sets, users can perform simple data cleaning and
transformation operations. In addition, the dashboard supports automatic data type
detection.

As mentioned above, the integration with the Portal is done by including the Visualizer GUI in
an I-Frame of the frontend, which enables a link to the tool in a menu at the left side.

More details about the tool implementation can be found in the WP3 deliverables, since this
tool is developed in the context of such WP.

8.1.1 COVISE

COVISE stands for COllaborative Vlisualization and Simulation Environment. It is an extendible
distributed software environment to integrate simulations, post-processing and visualization
functionalities in a seamless manner. COVISE Rendering modules support virtual
environments ranging from workbenches over powerwalls, curved screens up to full domes
or CAVEs. The users can thus analyse their datasets intuitively in a fully immersive
environment through state-of-the-art visualization techniques including Volume rendering

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 48 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

e@ HiDALGO

and fast sphere rendering. COVISE is an open source software. The source code (we use
version v2021.1) is available on GitHub (https://github.com/hlrs-vis/covise) or as build for all
supported Operating Systems (on).
More details about the tool implementation can be found in the WP3 deliverables, since this
tool is developed in the context of such WP.

8.2 Available APIs

8.2.1 Visualizer

Visualizer is exposed through a web GUI. The actual dashboard has three main areas, the data
selection area, the visualization selection area and the actual dashboard showing multiple
coordinated views.

Each visualization is configured within its own I-Frame enabling users to create their own
visualizations and using their libraries independently from all other visualizations.

Brushing within one visualization updates all other visualizations depending on the
configuration for incoming events. Visualizations can either filter or highlight the selected
data or remain unchanged depending on the configuration.

We can see a sample dashboard with four different visualizations in Figure 28. On the left side
data is divided in to categorical and numerical fields. Depending on which data fields are
selected, different visualizations are enabled within the VisPicker on the right side.

0 «» = 0
T | =
‘‘‘‘‘‘‘‘‘‘‘
tinent AN
h
),
00m /
p &
EE
.

8 R 2 2/4\ 2

evn - xOVll Bar Chart (country, CO2 emissions) -H%

e expectane €02 emissions

g
cccccc .- pmm— e @ United states
¢ *’ ¢ f‘ 7 g;‘” £ Vg £47 ' 5 / ~": g “i 7/ 7z fiﬁ LFiisis ;*” £y
[
| Scatter Plot (country, Iife-expectancy, CO2 em... - H{ Parallel Coordinates (country, Iife-expectancy, [l Bar Chart (country, Iife-expectancy) [l Bar Chart (country, CO2 emissions)
Figure 28: Visualizer showing multiple coordinated visualizations
D5.6 Second HIDALGO Portal Release and System Operation
Document name: Y P Page: 49 of 83

Report

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://fs.hlrs.de/projects/covise/support/download/

LGOS
?@ HiDALGO

While configuring a dashboard, the URL is constantly updating containing all dashboard
information.

Opening this URL in the browser opens the corresponding dashboard within the browser. If a
local data set is used, it needs to be selected beforehand. Therefore, this can be used by the
frontend in order to directly list the graphs that could be visualized as an outcome of concrete
simulations. Using this URL, dashboards can be easily deployed within any other website.

The following example shows how Visualizer can be integrated to any website using I-Frames:

<html>
<head>
<style>
iframe {
width: 800px;
height: 800px;
border: 1px solid black;
}
</style>
</head>

<body>
<iframe src="URL" frameborder="0" id="visualizer" name="visualizer"></iframe>
<script>
var data="";
window.addEventListener("message", function (event) {
if (event.data === "visualizer-ready") {
show();
}
1;
function show() {
window.frames.visualizer.postMessage(data, "*");
}
</script>
</body>
</html>

Here the URL can be set either directly in the I-Frame
<iframe src="http://vismobile.know-center.tugraz.at/#..." frameborder="0" id="visualizer" name="visualizer"></iframe>
or by selecting the I-Frame and changing the source

document.getElementByld("visualizer").src ="http://vismobile.know-center.tugraz.at/#...";

The data itself is pushed to the I-Frame using

window.frames.visualizer.postMessage(data, "*");

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 50 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

e@ HiDALGO

8.2.1 COVISE

The main way to expose COVISE is through a desktop application that acts as client to load
and visualize the data locally. We show the so called MapEditor in Figure 29, which is the main
part of the user interface. In COVISE an application is divided into several processing steps,
which are represented by COVISE modules. This usage is recommended for developers to
visualize simulation outputs on a personal computer or with a virtual environment system.

@ COVISE Map Editor (mack@RGExolotl) - D:/src/covise/net/examples/Airbag.net - O X
File Edit View Pipeline CSCW Help

= 3 ‘ © ¢ K2 | #E S5 [mo% v| Rweovise Colors IsoSurface CuttingSurface Collect Renderer

Filter: |

Module List |

& .
i B9 Converter
B9 Examples

B B Filter

& % General

% HLRS

g

& B9 Interpolator

B B9 Mapper

B % Obsolete

S Renderer

» Mor..

° OpenCOVER

© Renderer

© VRMLRenderer
© VRRenderer
Simulation

Test

Tools

vISiT

Renderer

Message Area g x

: 2 messages| Map Editor: Online help not found in local decument search path "D:/src/covise”, falling back to "hitps://fs.hirs.de/projects/covise/doc/html"
Figure 29: COVISE GUI

In order to provide a simple and user-friendly application of COVISE an extension is being
developed. The data processing is executed in a virtual machine and generates a single html
file as output, which can be opened easily in a browser or integrated in a website. This
workflow allows the user to enjoy an interactive, three-dimensional visualization without
installing additional software. The execution of COVISE is done automatically and needs no
adjustments.

This is the way in which COVISE will be integrated in the Portal, since it is possible to generate
the corresponding HTML for visualization, after simulations have been executed.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 51 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

é@ HiDALGO

8.3 Usage and Examples

8.3.1 Visualizer

Visualizer has been introduced and benchmarked in Deliverable 3.2. This subsection provides
an overview on how to use the tool.

Figure 30 shows the data selection view of Visualizer enabling users to either select local files
or specify the URL to a remote data set.

Get started Load sample dataset: | Choose dataset

Select Dataset

Use a local file

SelectFile = Select Folder Select Config File

Or enter a URL to your file

Load from URL

ACCEPT
Figure 30: Data selection in Visualizer

After selecting a data set, the table view enables users to investigate their data. Visualizer
performs automatic data type detection; however, users can change them on demand as
shown in Figure 31. In addition, simple data cleaning and transformation operations can be
performed in the table view.

Clear Al Filters | Remove Incomplete Columns Remove Incomplete Rows Remove Columns | Merge Columns | Aggregate
© country 2 @ year ¢ @area ¢ @ popul % @ continent I © life-expectancy ¢ @ GDP nominal ! ¢ @ cozemissions
ocation) ~ v) % integer) ° ° (ntege ° integen °
Argentina sl 2780400 43416755 South America 3 455048 191108 0004403784
Australia _ 7781220 23789752 Oceania 82 1301024 246348 0018762196
Brazi 2015 8547403 207847528 South America A 2330363 486229 0002330354
Canada 2015 9970610 35848610 North America 82 1796304 555400 001549293
china 2015 9572900 1371220000 s 7 8900811 10641788 0007760817
France 2015 551500 66538391 Europe 82 2774810 27787 0004926284
Germany 2015 357022 81679769 Europe 81 3696832 777905 0009523839
india 2015 2287263 1311050527 £ 68 2206627 2454968 000187252
ttaly 2015 301316 60730582 Europe & 2058113 352885 0005810664
Japan 2015 377829 126958472 A 8 5986138 1252889 0009868495
2015 90434 50617045 Asi 82 1266580 617284 001218518
2015 1956201 127017224 Nort 7 1208009 an2017 0003716165
Russia 2015 17075400 144096870 E 7 1631635 1760895 0012220217
United Kingdom 2015 242900 65128861 Europe 81 2682177 308524 0006119008
Indonesia 2015 1904569 257563815 Asi 60 987514 502961 0001952763
Saudi Arabla 2015 2149690 31540372 A 7 672213 505565 0016029139
South Afica 2015 1221087 55011976 Aftica 57 417307 417160 0007583076
Turkey 2015 774815 78665830 ssia 7 906443 37157 000454018
United States 2015 9363520 321418820 North America 7 16597445 5172337 0016092203
European Union 2015 4475757 509557762 Europe 81 17885420 3469670 0006809179
Argentina 2018 2780400 42080026 South America 76 aam189 189189 0004401789
Australla 2014 7781220 23460694 Oceania 8 1272519 438504 0018691007
Brazi 2014 8547403 206077898 South America 7 2021601 505395 0002452446
J Download JSON Download CSV | Cancel = Accept

Figure 31: Visualizer table view

After confirming the selected data sets, users can proceed to the actual dashboard view and
create a dashboard depending on their demands. A sample dashboard is shown in Figure 28.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 52 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

N
é@ HiDALGO

After creating the dashboard, users can perform interactions within the dashboard.
Interactions within one of the visualizations highlight the corresponding fields in all other
visualizations, as shown in Figure 32.

D « v LY
gorical Data evhiE tter Plot try, lif i e -Nx P
e B B et =
country
T | =
§ -
continent oos- @ .
M 1
o068 14000000 0016
Z
" ~,, 12000000 oo
: 2
10000000 2
.]
-
.
:
X
0.002 «
- -
:
& & & 0002
evn) S

Saudi Arabla

™ South Africa

@ south Korea
Turkey

w United Kingdom

@ United states

[

L Scatter Plot (country, life-expectancy, CO2 em... : [Parallel Coordinates (country, life-expectancy,. (L Bar Chart (country, life-expectancy) (L Bar Chart (country, CO2 emissions)

Figure 32: Coordinated multiple views in Visualizer

8.3.1 COVISE

This section covers the usage of the web interface, generated by COVISE for enabling remote
visualization. The user interface in the web application is kept simple. The menu allows to
switch view modes and to scroll through data for several time steps, as shown in Figure 33.
This demonstration is used to show the simulation output of the use case Urban Air Pollution.
In this example the city centre of Stuttgart is visualized. The different components like
buildings, streets or park areas can be hidden by toggling buttons in the menu.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 53 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

@ HiDALGO

-] R N e e] m B B t MmO 00 8

Deeichrtie O @ B B 0 U viesioetet U vesloecagtin 8 ks T Oub Clent sace - 0) Sechescsl doosment st i o Vompating Pramer

D Pyt bow St Scen . 84 incroadection S Outa s) e SOmioeeteiie. R B

Figure 33: COVISE web application

In the simulation, the airflow and spread of oxides of nitrogen (NOx) in urban areas are
observed. These results are visualized in the web application. The concentration of NOx is
illustrated by a so-called cutting surface pointing out areas with high rates of NOx, see Figure
34.

/D:/WebVis/HIDALGO/gyoerhtmi - X

€)> C o D filey///D:/WebVis/HIDALGO/gyoerhtml R 4 L Nn@Deoe 9 =

@ EsteSchite ® @ B [W visuslizerTest hd VisualizeVMhirs @ CKAN [CKAN Client.docx - O... @ technical-document tat.. @) GoToMeeting Transcri... & Python for Data Scien... A Introduction to Data S... &£ HTML DOM createfle... EIwiki © ckan/ckanext-mapvie. »

Figure 34: COVISE web application showing nitrogen oxide concentration in urban areas

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 54 of 83

Reference: D5.6 |Dissemination: PU Version: (1.2 Status: Final

@ HiDALGO

The airflow is visualized by wind-lines along the propagation direction, see Figure 35.

0/ WebVis Timeseries/stuttgart X I8

c o D file///D:/WebVis/Timeseries/Stuttgart.html -9 noeoe o =
@ Eteschitte @ @ B B D A VisuslizerTest hd VisualizeVMhirs @ CKAN {8 CKAN Clientdocx - 0... @ technical-documentat.. @ GoToMeeting Transcri... A . " = HML Bk O »

Figure 35: COVISE web application showing airflow in urban areas

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 55 of 83

Reference: D5.6 |Dissemination: PU Version: (1.2 Status: Final

A

e@ HIDALGO
9 Support Tools

9.1 Implemented Solution

9.1.1 WiKi

Support tools are detailed in Deliverable D5.4[5] with Zammad and Askbot. Zammad is the
support ticketing tool, which is used by customers for raising customer requests by email or
Zammad web GUI. Askbot is a community forum, which is used by the community to discuss
problems and solutions in a common platform. Zammad and Askbot are available for public
access, so we started provisioning customer supports to address the customer queries as
defined in D5.4[5]. In this deliverable, Wiki.js[21] is introduced to HIDALGO users for sharing
the documentation of HIiDALGO toolbox and other non-confidential information in a
collaborative editing platform.

Letsencrypt SSL certificate

Figure 36: Wiki.js Software Stack.

Wiki is an internal supporting tool used in HiDALGO to share information within the
consortium. It is further planned to integrate the Wiki with the portal to make produced, non-
confidential information also available to HIDALGO community. Wiki is the tool developed for
supporting collaborative editing, so it would be considered as an identical tool for building a
sustainable HIDALGO community by allowing the users to exchange their information in a
common platform.

Wiki.js[21] is a well-established open source Wiki solution, and thus it was selected among
other competitors due to its simplicity, markdown support and Keycloak OpenID
authentication. Specifically, Wiki.js is the only collaborative editing tool that supports Keycloak
OpenID for authentication, to the best of our knowledge. As a consequence, it will be
straightforward to integrate it with the HiDALGO portal. Wiki.js and Wiki are the terms used
interchangeably, and both refer to the installation of HIDALGO Wiki®.

8 HiDALGO Wiki weblink - https://hidaleo-wiki hlrs.de

D5.6 Second HIDALGO Portal Release and System Operation
Report

Document name: Page: 56 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://hidalgo-wiki.hlrs.de/

LGOS
@ HiDALGO

Wiki.js, specifically version 2.2.51, and its installation architecture details are depicted in
Figure 36. The editing tool is installed, for now, manually in the production VM to allow
internal access within the consortium. Wiki.js supports local authentication, so the user
credentials are stored safely inside a PostgreSQL database. Further, Wiki.js manages the
authorization by managing groups and page rules to restrict the functionalities and page access
at the fine-granularity level. As of now, three groups are created having different access
permissions:

e The “Admin” group is created for administrating the users, wiki pages and changing

configurations.
* The “Write” group is allowed to create and edit both public and internal wiki pages.
* The “Guest” group is allowed to create and edit only public wiki pages.

Page rules provide permission at the page level, meaning that this feature allows to restrict
the permission at a fine-granular level. Currently, Wiki is setup with the global page-rules for
allowing access only to the consortium members assigned to the “Write” group. Wiki.js
supports page creation by markdown scripts, which is very common for the documentation
and simple to learn by few commands. Wiki.js installation would be automated with Ansible
scripts for supporting Cl/CD operations in the portal development (cf. Section 3). Moreover,
Wiki.js authentication and authorization will be configured to support Keycloak SSO for
potential integration with the portal (cf. Section 4). Wiki.js is configured to support self sign-
in, but the features of automatic user verification and password reset are not functioning
properly in the current version. The improperly functioning features are planned to fix in the
upcoming Wiki.js version, so the Wiki.js installation will be updated accordingly to fix those
bugs. Public wiki pages will be created to share the documentations of HiDALGO toolbox and
common information to ensure public accessibility.

9.1.1 Askbot

In a span of last couple of months several improvements have been implemented into Askbot.
Among these are the introduction of email notifications and backup solution. Askbot can now
notify users about events like new replies, votes, answers or private messages via emails
(instantly or periodically). Notification filters and frequency can be set individually for each
user.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 57 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

LGOS
?@ HiDALGO

By default, instant notifications are triggered by answering questions posted or subscribed by
user. Periodic emails contain aggregated notifications for the events that happened during
that period.

asdf-asdfasdf

Figure 37 Example of notification email

Another aspect in which there was some progress is related to the backup procedure. Since
Askbot and its database is run in Docker container, external volumes of data were specified.
Those volumes contain application database and setting and are accessible from the host OS,
outside of the container.

This solution allows copying internal application data to an external location (network file
system) and then restore it in case of failure or rollback.

Data restoration is performed as a final part of Ansible script. This ensures that every new
installation can immediately provide a recent snapshot of Askbot knowledge base.

Backing up the data is triggered periodically by Jenkins task.

9.2 Available APIs and Usage

9.2.1 WiKi

Wiki.js is a standalone application with its own GUI, so it is installed as an individual component
with the separate domain name (). Wiki.js provides graphical GUI
for registering and log-in in the home page as shown in Figure 39. Users are currently activated
manually by admin, due to the problem with automatic user verification by email.

9.2.2 Askbot

Askbot main interfaces and features have been widely explained in the deliverable D5.4[5]
and, therefore, they are not replicated here. Since there is a new feature available for enabling
email notifications, this section aims at showing how to activate it.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 58 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://hidalgo-wiki.hlrs.de/

4@"

ga HIDALGO

admin (karma: 10011, badges: @ 1 2)

A | ALL UNANSWERED FOLLOWED §SE

ASK YOUR QUESTION

A

e@ HiDALGO

email alerts

Adjust frequency of email updates. Receive updates on interesting content by email. If you do not wish to receive emails - select 'no email' on all items below.

Updates are only sent when there is any new activity on selected items

instantly daily weekly never

Asked by me ® O O o
Answered by me @] ® O O
Individually selected ® (%] O O
Entire forum (tag filtered) O) ® @]
Comments and posts mentioning me @ @] @] O

Choose emalil tag filter (O subscribe fo all tags @ exclude ignored tags (O only interesting tags

Update [Stop Email]

Figure 38 Example email notification settings

Users just need to enter in their profile and select the ‘email alerts’ tab, where they will be

shown the kind of notifications they can receive and how they can be configured (in terms of

periodicity). Once the user does the selection, clicking in ‘Update’ will save the selection and

notifications will be activated. All of them can be disabled by clicking in ‘Stop Email’.

9.3 Usage and Examples

Askbot and Zammad are tools that were already described in detail in the deliverable D5.4[5].

Therefore, this section is focused on the usage of the Wiki solution. First of all, users have to

sign-in, as shown in the figure below.

Login required

HiDALGO Wiki.js
E }::'\emkumar.ra,agopal@hlrsde

ER sevsesrnsnereann Q

Figure 39: Wiki sign-in and user registration page.

Document name: 35.6 Second HIDALGO Portal Release and System Operation Page: 59 of 83
eport
Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

P~

?@ HiDALGO

The Admin users can manage the users, groups and page rules as shown in Figure 40°. The Write
users have complete control to create, edit and delete all the wiki pages in the system, which is
shown in Figure 41 and Figure 42.

HIiDALGO Wiki.js
3
2% Genenal
Public User Access Details en public Today at 12:35 PM
Cf:tﬂ Locale
WPS: Centre
Implementation and o WOCKPAcKages/wpo Yesterday at 5:35 PM
<« Navigation Operation
Task 3.2 Scalability, = .
[3) Pages ‘ 2 ozt en workpackages/wp3/tasks/task_3_2 Yesterday at 10:26 AM
St Optimisation and Resiliency
W Tags Perfume en Yesterday at 10:26 AM
workpackages/wp3/task_3_2/da_benchmarks/perfume
€D Theme Task 3.5 Visualisation of ; : g
¢ f ay a
large-scale Data ' d ¥
Task 3.3 Development of .
) ednesday a
advanced HPDA methods J d "
.
&%, Groups Social Network en tasks/task_3_3/sn Last Wednesday at 3:21 PM
Users
B Urban Air Pollution en tasks/task_3_3/uap Last Wednesday at 3:13 PM

Figure 40: Admin Ul for managing Users, Groups and Page rules.

Q Search...

HiDALGO ﬂ

HIDALGO Project Wiki [__.—: Edit
HiDALGO Project Wiki D History
Sc—rgx.y » Workpackages <> View Source
» WP1: Project Management
» WP2: Business Models and Sustainability 3 Move/Rename

» WP3: Exascale HPC and HPDA System Support

@ Delete

» WP4: Pilot Applications

» WPS5: Centre Implementation and Operation

» WP6: Requirements Evolution and Component Integration

» WP7: Awareness Creation and Community Support

» WP8: Ethics requirements
» Working groups: parallelization =< infrastructure & portal =< GIS visualization < Location

Extraction <1 data formats < innovative architectures

Figure 41: User can edit an existing page.

? HIDALGO Wiki weblink -

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 60 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

http://hidalgo-wiki.hlrs.de/

@ HiDALGO

Which editor do you want to use for this page?

Markdown Visual Editor

Plain Text Formatting Rich-text WYSIWYG

Figure 42: Users can create a new page with different editors. Markdown is used as the default editor.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 61 of 83

Reference: D5.6 |Dissemination: PU Version: (1.2 Status: Final

A

é@ HiDALGO

10Interactive Notebooks

10.1 Implemented Solution

As described in D5.2[1], the HiDALGO portal will allow users to write and execute code for
testing, prototyping and visualizing their data. To provide these capabilities, HIDALGO has
selected to integrate Jupyter Notebooks to its portal.

The Jupyter Notebook is an open source web application maintained by Project Jupyter® that
allows users to create and share documents that contain live code, equations, visualizations
and text. These notebook documents are both human-readable documents containing the
analysis descriptions and results (figures, tables, etc.) as well as executable documents which
can be run to perform data analysis. More specifically:

e Jupyter supports over 40 programming languages, including Python, R, Julia and Scala.

e Users can develop code that produce rich, interactive output, such as HTML, images,
video, LATEX and custom MIME types.

e Jupyter can be used for data cleaning and transformation, numerical simulation,
statistical modelling, data visualization, machine learning, etc. It can leverage Big Data
tools, such as Apache Spark, and explore the data with tools such as pandas,
TensorFlow and scikit-learn.

ICCS performed a thorough analysis of the different available options for integrating Jupyter
Notebooks to the HiDALGO portal. The analysis concluded that in order for the service to be
able to scale to high number of users, the best solution was the installation of JupyterHub'?,
a multi-user version of the notebook designed for companies, classrooms and research labs.
Its most prominent features that led to its adoption by the project are the following:

e Customizability: JupyterHub can be used to serve a variety of environments, as it
supports numerous kernels, including Jupyter Notebook, Jupyter Lab, RStudio and
others. Therefore, if at a later point HIDALGO chooses to offer as a service an
alternative to Jupyter Notebook, it will be provided by JupyterHub as well.

® Flexibility: JupyterHub can be configured with authentication and supports a number
of authentication protocols, including OAuth, which is supported by the Single Sign On
service of the HIiDALGO portal.

e Scalability: JupyterHub can scale to tens of thousands of users leveraging modern-day
container technology.

0 http://jupyter.org/
11

D5.6 Second HIDALGO Portal Release and System Operation

Report Page: 62 of 83

Document name:

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://jupyter.org/hub

N
é@ HiDALGO

e Portability: JupyterHub is open source and can be run on a variety of infrastructures.

To provide the desired scalability and allow numerous users of the HiDALGO portal, it was
decided to install JupyterHub on top of a Kubernetes cluster. The cluster currently comprises
three VMs, the specifications of which are provided in Table 7, but can be easily extended if
needed. Node_1 acts both as the kubernetes master, where all the core services run, and as
a kubernetes worker node that can spawn application containers; Node_2 and Node_3 act
only as worker nodes.

Node_1 Master Node 2 Node_3
Number of CPUs | 4 2 2
CPU Frequency 2.6 GHz 2.6 GHz 2.6 GHz
RAM 12 GB 8 GB 8 GB
(O Ubuntu 18.04 Ubuntu 18.04 Ubuntu 18.04
Linux kernel 4.15.0 4.15.0 4.15.0

Table 7 Specifications of the three VMs that host our jupyterhub installation

The kubernetes setup process was facilitated by leveraging the ansible scripts provided by
kubespray’?, an open source project that offers scripts to create kubernetes clusters as well
as to modify them by adding or removing master and/or worker nodes. Then, JupyterHub was
installed over the kubernetes cluster using helm, the kubernetes package manager.

As a result, each user executes its own instance of Jupyter Notebook, inside a pod, which is
kubernetes’ group of docker containers. The data of each user is stored in a hostpath, a type
of volume supported by kubernetes that mounts a directory from the host node’s filesystem
into the pod. To enable notebooks to access the same user’s data independently of the node
where the user happened to log on, the hostpath was setup as an NFS shared mount point
common for all the nodes of our cluster.

Component Version Repository License
Docker 19.03.9 | https://github.com/docker/docker-ce Apache License
2.0
Kubernetes | 1.18.2 | https://github.com/kubernetes/kubernetes.git | Apache License
Client 2.0
Kubernetes | 1.18.2 | https://github.com/kubernetes/kubernetes.git | Apache License
Server 2.0
Helm 2.17.0 | https://github.com/helm/helm Apache License
Client 2.0
Helm 2.17.0 | https://github.com/helm/helm Apache License
Server 2.0

12

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 63 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://github.com/kubernetes-sigs/kubespray

N
e@ HiDALGO

Component Version Repository License
Jupyterhub | 0.9.0 https://github.com/jupyterhub/jupyterhub BSD License

Table 8 Details of all the components that make up the jupyterhub installation

10.2 Available APIs

HIiDALGO’s JupyterHub portal can be currently accessed via

. As shown in the following picture (Figure 43), once the user logs in, she
is presented with a list of previously saved notebooks and she is able to create a new
notebook, upload a notebook stored in her local machine or upload any necessary data.

: Ju pyter hub Logout = Control Panel
Files Running Clusters

Select items to perform actions on them. Upload || New~ |
Qo |~ [l Name < | LastModified | File size
[J & CKAN Integration testing.ipynb 12 herrid Tpw 3.53kB
[0 & untitled.ipynb Running 31 AeTrud TIpiv 72B
O [cosaPl test.py 20 Aemm@mpy 1.25kB
O 3 ckan Integration testing.py 28 Aerria TIpv 2.31kB

Figure 43 HIiDALGO's JupyterHub GUI

X & 1_DalaFrep x + - e x

€ 5 G 1 @ hicdigonotbookhisde/iser]imiskinotebosksfs_DaranzCPTpocessing s a% a0c0@ER2BE =@
" jupyterhub 1_Data Preprocessing Last Creckpoint 02062020 fautosaved) o g Conirol Panei

Fle Edt Vew Insen Cel Kemel

B+ | A B 4+ HAn B C W vakdwn v (2

Preprocessing of the data

Choose a dataset

In [1]: # Choose the

i dn
DATA = i e the datasel you want o preprocess: ‘)

breal
if DATA
breal
if DATA
break
if DATA == 'bvb':
break

else
print('Choose between one of the five datasets (vegan, neos, fpoe, schalke, bvbl: °)

Choose the dataset you want to preprocess: vegan

InlI:

Read in the data
n (2] Import all the package:
import json
import os
impo

rt time
import pandas as pd

from pandas. io. json import json narmalize
Get
path
input_pa

+ '\\data\\hpt_' + DATA + '_tweets.json

Re.
tweets = []
for Line in open{input path, 'r'):

tweets .append(json. Loads (Line) }

N JndEr Traceback (most recent call last)
1python- 1nput-2-c17d19e27623> in

Figure 44 GUI for viewing, modifying and executing a notebook

D5.6 Second HIDALGO Portal Release and System Operation

Report Page: 64 of 83

Document name:

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://notebook.hidalgo-project.eu/hub/login
https://notebook.hidalgo-project.eu/hub/login

LGOS
é@ HiDALGO

When the user selects a notebook to open, a new tab opens in her browser showing the
contents of the notebook. As shown in the figure that follows (Figure 44), the user has then
option to modify, execute, interrupt, etc. the kernel.

JupyterHub has been integrated with the HIDALGO CKAN repository to allow the portal users
to access and manipulate their data stored in the repository. To enable this we leverage
ckanapi®?, a python module that can be used in a Python 2 or Python 3 application in order to
utilise the CKAN Action API*“,

10.3 Usage and Examples

The next figure (Figure 45) provides an example that shows how a user can access data stored
in her folder in the HIiDALGO CKAN repository.

3 https://github.com/ckan/ckanapi
4 https://docs.ckan.org/en/latest/api/index.html#action-api-reference

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 65 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

e@ HiDALGO

' Jupyterhub CKAN Integration testing Last Checkpoint: 4 e mpw (autosaved) @ Logout | Control Panel

File Edit View Insert Cell Kemel Help usied | Python 3 O

B+ 5 & B 4+ ¥ MRin H C| MW Makdown v =

Preperation

We first install the ckanapi python library. This step may be removed later if we choose to install ckanapi systemwide.

In []: import sys
I{sys.executable} -m pip install ckanapi

Libraries

Import useful python libraries:

In []: from ckanapi import RemoteCKAN
import json
import requests

Connect to CKAN server

Then we install a connection with the remote CKAN server. The API Key below belongs to ICCS account, you can find your organization's API Key in

In []: apikey = "XXXXXXX-XXXX-XXXX - XXXX - XXHHXXXXXXHXXXX "
demo = RemoteCKAN('https://hidalgol.man.poznan.pl/', apikey)

CKAN API Examples

We showcase some ckanapi examples below, see the comments for more information. You can find detailed documentation in
hitps:/idocs.ckan.org/en/2 8/api/. Note that ckan http requests are transformed in python with the following example:

http://demo.ckan.org/api/3/action/group_list becomes demo.action.group_list() inpython

In []: # Retrieve information regarding user permissions
organization_permissions = demo.action.organization list_for_user()
Gather groups
groups = demo.action.group_list()

Gather information about ICCS Dataset named "Test Dataset"

show dataset = demo.action.package show(id='test-dataset')

Search the ckan server for a file named "test.json",

get its URL and then retrieve its data

search_resource = demo.action.resource_search(query='name:test.json')
get_url = search_resource['results'][@]['url']

data = json.loads(requests.get(get_url).text)

"json.dumps" 1is used to beautify json data
print(json.dumps(groups, indent=2))

Print (M e e e e ")
print(json.dumps(show_dataset, indent=2))

L ")
print(json.dumps(search_resource, indent=2))
L ")

print(json.dumps(data, indent=2))

Figure 45 Example of accessing HIDALGO CKAN repository through HiDALGO's JupyterHub

Finally, the next figure (Figure 46) presents an example notebook for retrieving and working
with weather and climate data stored in the Climate Data Store!> and ECMWF MARS Archiveé.
After installing the libraries for retrieving (Climate Data Store API (CDS API)Y and Weather
and Climate Data APl (WCDA)) and processing the data (xarray*® and cfgrib'®) using conda, the
user can manipulate the data to prepare them for the use in the applications.

15 https://cds.climate.copernicus.eu/

16 https://confluence.ecmwf.int/display/UDOC/MARS+user+documentation
17 https://cds.climate.copernicus.eu/api-how-to

18 http://xarray.pydata.org/en/stable/

¥ https://github.com/ecmwf/cfgrib

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 66 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

"~ Jupyterhub CDSAPI testpy 13 xemanpw

File Edit View Language

#!/usr/bin/env python

import sys

HWN e

4 from datetime import date, timedelta
9 import xarray as xr
e

10 import cdsapi
11
12 ¢ = cdsapi.Client()

13
14 c.retrieve(

15 ‘seasonal-postprocessed-single-levels',
16
17 ‘format':'grib’,

18 ‘originating centre':[

19 ‘ecmwf', 'ukmo’

1.

21 'system’: [

22 o k.

23 1.

24 ‘variable':'2m_temperature_anomaly',
5 ‘product _type':'monthly mean',
6 ‘year':'2019',

‘month':'05"*,
‘leadtime month':[

29 BSOS
30 1
3

‘seasonal.grib*)

from polytope.api import Client

37 request = {

38 ‘stream': ‘oper’,
39 ‘levtype': 'sfc’,
40 ‘param': 'l6u/lév’',
41 ‘step': '@’',

42 ‘time': '00',

43 ‘date’: '20200305',
44 "type's 'fc',

45 ‘class': 'od',

46 ‘expver': 'eeel’',
47 gria’: 17y

48 '}

49

50 c.retrieve('hidalgo-mars', request, 'sfc.grib')
51

52 ds = xr.open_dataset('sfc.grib’,engine='cfgrib")
5

53
54 ds.ule

get_ipython().system('conda install --yes --prefix {sys.prefix} cdsapi')
5 get_ipython().system('conda install --yes --prefix {sys.prefix}
6 get_ipython().system('conda install --yes --prefix {sys.prefix}

-¢ conda-forge xarray')
-c conda-forge cfgrib')

3
35 ¢ = Client(user_email = 'user-xxx@ecmwf.int',6 user_key = 'XXXXXXXXXXYYYYYYYYyyyy')
3

A

HiDALGO

|

Logout = Control Panel

Python

Figure 46 Using JupyterHub to retrieve and process weather and climate data

Document name: 35.6 Second HIDALGO Portal Release and System Operation Page: 67 of 83
eport
Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

11Frontend and Applications GUI

A

e@ HiDALGO

11.1 Implemented Solution

The Frontend part has suffered several modifications. First of all, it has improved the way in
which applications can be installed and executed. On the other hand, we have enabled the
integration of the different components of the Portal in a one-stop-shop, where users can

access all the features easily.

11.1.1 Integration of the Portal Components

In the first version of the Portal, we had several services available, but they were deployed in
a quite isolated way, so it required to any user to know the concrete URLs to access them,

with no connection between them.

In this version, the effort has been focused on the integration of these separated components,
so now it is possible to access only the frontend and get access to the rest of the available

elements, such as the training (Moodle), Q&A (Askbot), etc.

= Global Challenges Portal

Jjavitest

(francisco.nieto@atos.net)

Applications

B Dashboard

B Applications

B Orchestrator
Community and Support
B Training

B q&AForum

B MatchMaking
B Ticketing System
Data Management

B Data Catalogue

© All rights reserved 2020

= HIiDALGO Training

@ HiDALGO

Available courses

¥ Cloudify and CKAN

You are not logged in. (Log in)

®

Q

In this course, you will learn the introduction of Cloudify
and CKAN tools.

e Cloudify is the Orchestrator to manage the workflow of applications

o Introduce the basic terminology

o Introduce basic Helloworld blueprint for running MPI Hello World application in

HPC cluster

® CKAN is the data management tool for managing applications' input and output

data

Figure 47 HiDALGO Portal with the Training tool

There are two different ways in which such integration has been done:

e Usage of iFrames
e Open new tabs

Document name:

D5.6 Second HIDALGO Portal Release and System Operation

Report

Page:

68 of 83

Reference:

D5.6

Dissemination:

PU

Version:

1.2

Status:

Final

~

LGOS
é@ HiDALGO

Due to the complexity of the applications to be integrated, using Javascript was not the
solution in order to integrate the GUIs of the other components. The Frontend is implemented
in Angular and, therefore, the way to do it was to include each component as a ‘module’ in
Angular. The list of components supported in v2 is:

e Training (Moodle)

e Q&A (Askbot)

* Ticketing System (Zammad)
e Orchestration (Croupier)

e Data Catalogue (CKAN)

e Visualizer

Only in the case of Croupier and Zammad, since their GUIs do not allow iFrames (due to the
X-Frame option embedded in their code), the solution was to include some page with
information about the tool and a button to open the tool in a new tab.

The Frontend includes a button in the top left that shows a menu, giving access to the features,
organized according to the type of functionality they provide (Applications, Community and
Support, Data Management and Visualization).

Although this is a valid solution for integrating the tools, sometimes the look and feel is not
the best one. Therefore, the next version will re-model the frontend, in such a way that the
access will keep simple while the Frontend improves the aspect of the whole Portal.

Additionally, the support to the Jupyter Notebooks is ongoing, and more tools will be added,
such as the Polytope interface (as one of the data management tools) and the web version of
COVISE (as one of the visualization tools).

11.1.2 Execution of Workflows

In order to ease the way in which users can execute their simulations, the Frontend includes
a more elaborated interface for managing the applications and their execution. The figure
below shows how different parts of the Portal interact in order to make this to happen.

Frontend Backend
 — @ S @,-)
CLOUDIFY

l
8

Database

Figure 48 Implemented structure for execution workflows

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 69 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

LGOS
é@ HiDALGO

Currently, the Frontend provides two options, one for adding new applications and another
one to execute an existing application. In the first case, the user just needs to provide an
application name, a description and a zip file with the blueprint that represents the
application. Then, the Frontend communicates to the Backend about the new application and
the Backend performs two actions: i) it stores the provided information in the local database
and ii) invokes the Croupier REST API in order to install the new application.

As for the execution activity, the Frontend retrieves the information from the blueprint,
identifying the input parameters required, creating a form with the list of parameters. Then,
a user will be able to fill in these parameters and ‘Run’ the application.

The Backend receives the list of parameters, generates a YAML file with the inputs and sends
this input file to the Orchestrator, as a first step to create an instance of the application
(through the REST API). Then, invokes again the REST API, but this time for executing the
instance it just created. As soon as some information is generated by the Orchestrator, the
Backend provides this information to the Frontend, that will show it.

It is important to mention that all these operations are supervised by Keycloak, since both the
Frontend and Backend check the security tokens against Keycloak.

While the Frontend is a web application implemented in Angular, the Backend is a Django
application implemented in Python3, including multiple libraries, like cloudify-common,
djangorestframework, mozilla-django-oidc, pyOpenSSL and PyYAML. An additional work has
been done in order to deploy the Backend using uWSGI as web server and to dockerize the
whole solution, although, since it has shown to be more complex than expected, we may
decide to change to Gunicorn in the next release.

11.1.3 User Matchmaking

Matchmaking functionality and APl are not changed from D5.3[2]. Matchmaking is
implemented by using python2.7 and it is no longer supported, so it is planned to port to
python3.6. Matchmaking algorithm is currently based on the Geometric Mean algorithm to
calculate the user’s relation, and it is planned to enhance with the machine learning
algorithms (clustering) to group users based on the users’ profile and preference information.

11.1.4 Usability, Users’ Feedback and Monitoring

11.1.4.1 Testing Usability

There are some tools and services that can support developers for understanding how the
users make use of the web applications deployed, generating heat maps (indicating the main
areas where users move the mouse and click), generating useful questionnaires, measuring
certain aspects related to performance (i.e. loading times), etc. Since these tools and services

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 70 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

LGOS
@ HiDALGO

may provide valuable information to the consortium, we have analysed those that are
available, in order to understand how they can be applied in the context of the project. The
main issue detected, in general, is that the vast majority of tools and services are not for free
(requiring some monthly fee), although most of them provide limited periods of free trials
(usually, between 14 and 30 days).

Some of the widely used tools are Qualaroo?, Crazyegg?! and Chalkmark??, which are not for
free. While the first one is quite focused on collecting feedback from users (i.e. showing up
some simple questions when users do certain actions), the other two keep track of the users’
activity and where they click. Qualaroo can collect feedback with small text boxes (i.e. to
collect a quick answer when a user cancels an action like a purchase) and other elements like
simple satisfaction questions to select how many stars to give. Then that information is used
together with IBM Watson to perform sentiment analysis depending on the answers received.

On the other hand, Crazyegg and Chalkmark are similar tools that monitor users’ activities,
generating snapshots, heatmaps, click density grids and recordings of individual sessions that
can be analysed in order to see if users are following the expected path to complete certain
tasks or if they are getting stuck in some part of the interface. This information can be used to
adapt the interfaces, making easier for users to complete the expected tasks.

There are also other tools that can be used for free (at least, for a good set of basic features).
From the analytical perspective, WebPageTest?® allows to carry out some tests to the website,
focused on its loading time and performance, so it is possible to figure out how to improve it
(i.e. we can simulate the access to the website from different locations). Google Lighthouse?*
has some similarities, carrying out audits about the website performance and even providing
information about SEO-related aspects. Additionally, mouseflow?’ is a tool like Crazyegg and
Chalkmark, that generates heatmaps and scrolling statistics, so we can analyse users’
behaviour (it is for free for one site, 500 recordings per month).

Another interesting tool is TAW?, that analyses the accessibility of a website. It takes into
account WCAG 2.0[22] in order to report to what extent people with different capabilities can
access to the website content as expected. It is able to detect some problems automatically
and it points out some other issues to be checked manually by the developer.

In the case of HiDALGO, we see interesting to use, at least, one tool for analysing the
performance and another tool for generating heatmaps, since they are complementary.

20
21
22
23
24
25
26

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 71 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://qualaroo.com/
https://www.crazyegg.com/
https://www.optimalworkshop.com/chalkmark/
https://www.webpagetest.org/
https://developers.google.com/web/tools/lighthouse
https://mouseflow.com/
https://www.tawdis.net

A

@ HiDALGO

11.1.4.2 Collecting Users’ Feedback and Monitoring their Actions

Since the consortium received some comments about having a more user-centric Portal, that
will also retrieve information about its usage and will collect users’ feedback. After analysing
several options, we decided to implement a system that will monitor the users’ actions
anonymously and that will also allow users to provide some simple feedback about their
satisfaction.

Solutions like Google Analytics can be integrated, but they require the users to accept certain
cookies that they might not want to accept and, since it requires some effort to integrate
anyway, we decided to include some code in the frontend that will interact with the Backend
in order to store usage information in the database. Each time a user starts a session, a hash
code will be generated for the session, keeping track of the main actions done (clicks done by
the user and paths followed to reach some functionality). We will include the possibility to
disable this option for operational environments, since we may expect a small drop in
performance.

Thanks to such information, it will be possible to retrieve data and group it, in such a way it
will be possible for us to understand the actions that users carry out most of the times, how
they execute certain actions and if there are features that are not used in general. This
information will be used to analyse the usability (we can see if they are efficient doing certain
actions and how much time it takes to them), to reorganize the Portal (it might be necessary
to give more visibility to certain features) and even to re-factor some code if it may require
higher scalability (because it is widely used).

Finally, as mentioned before, we have planned to include a simple questionnaire, so they can
provide some feedback. We will ask them to indicate the services/features that they use to
make use of, as well as their level of satisfaction with each feature and with the Portal in
general.

11.2 Available APIs

We can consider that the backend has two interfaces. First of all, the backend managing the
interaction with other components and keeping the database information provides a REST
API that is accessed by the frontend, in order to perform the complex operations. Such API
has been created with the Django-Rest-Framework (DRF) and, although there are several
modifications in the code that implements the services, we have maintained the same APl we
defined in D5.3[2], with the exception of minor additions. Therefore, section 5.2 of D5.3[2]
contains the description of the API served in this version. It is important to bear in mind that
now the REST APl is fully integrated with Keycloak and it can be only invoked using a security
token. The new API only contains two methods related to the reset of the backend.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 72 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

é@ HiDALGO

REST API endpoints API Description

apps/reset Used to reset the applications stored in the
database (GET method).

instances/reset Used to remove the instances created for all the
applications used from the Frontend (GET
method).

Table 9 New Methods of the Backend REST API

On the other hand, there have been modifications in terms of the web-based GUI. Although
we still maintain the Cloudify Web Console (as shown in D5.3[2]), there is a new version of the
frontend that allows for a different way to manage the applications. Moreover, it puts
together the rest of components under the same interface, as a way to provide a one-stop-
shop.

The GUI consist of a top part with the HIDALGO logo and information from the connected
user. Then, there is a button at the top left that shows the menu with all the options that can
be selected. Once the user clicks, the corresponding component is loaded.

In those cases in which it is not possible to embed the component interface, a new tab is
created. The next subsection shows how to use some of the new features of the frontend.

11.3 Usage and Examples

11.3.1 Using the Backend API

Since the main methods of the REST API have not changed, it is possible to invoke them as
before. In order to be compliant with the security requirements, it is necessary to get the
security token from the Keycloak first:

RESULT="curl -k --data

"grant type=passwordé&client id=curlé&client secret=xxback
endkeyxx&username=xxusernamexx&password=xxuserpasswordxx

"

TOKEN="echo SRESULT | sed
's/.*access_token":"\ ([""]*\).*/\1/""

Then, it is possible to send requests in order to list the applications and instances available in
Croupier:

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 73 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://prunus-212.man.poznan.pl/auth/realms/Hidalgo/protocol/openid-connect/token%60
https://prunus-212.man.poznan.pl/auth/realms/Hidalgo/protocol/openid-connect/token%60
https://prunus-212.man.poznan.pl/auth/realms/Hidalgo/protocol/openid-connect/token%60

A

& HIDALGO
curl -H "Authorization: Bearer STOKEN"

curl -H "Authorization: Bearer S$STOKEN"

It is also possible to add new applications and even to create new instances of an existing
application, like in the following example:

curl --data-urlencode app=FACS-blueprint --data-

urlencode name=xxappnamexx --data-urlencode

inputs file@my-blueprint-inputs.yaml -H "Authorization:

Bearer STOKEN" -X POST http://x.x.x.x:9000/instances/

11.3.2 The Frontend Web GUI

The frontend has now several features available just doing a few clicks. In the case of the
applications management, it is possible to access to the features of adding a new application
and executing an existing one by using the menu and selecting the options under
‘Applications’. In the case of adding a new application, for instance, we will be requested to
provide the name of the application and a description. Then, we will see the option to upload
the zip file with the blueprint.

= Global Challenges Portal a @ 2

Jjavitest

rancisea.nistoatosnet My Applications

Applications Add a new one

Name
B Dashboard

Narm

B Applications
Description

B Orchestrator .
description

Community and Support

Training

MatchMaking

a8
B qaAFoum
8
8

Ticketing System
Data Management

B Data catalogue

© All rights reserved 2020

Figure 49 Adding an application from the Frontend

Other options, like the direct access to the Croupier GUI are done under ‘Applications’,
selecting ‘Orchestrator’, but in such case, we are requested to click a button to open the
dashboard in a separated tab.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 74 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

http://x.x.x.x:9000/apps/
http://x.x.x.x:9000/instances/

A

e@ HiDALGO

= Global Challenges Portal o O 2

Jjavitest

(francisco nieto@atos.net)

This tool cannot be embedded yet. We are
working on it. In the meantime, please, click the
Applications button to access the Croupier Orchestrator!

B Dashboard

B Applications
B orchestrator
Community and Support
B Training

B Q&AForum Go to Orchestrator

B MatchMaking
B Ticketing System
Data Management

B Data Catalogue

© All rights reserved 2020

Figure 50 Accessing the Orchestrator GUI from the Frontend

In the case of the rest of features, most of them are embedded as iFrames, so it is necessary
only to click on the corresponding option and it will be shown in the main part of the screen.

Since it is not easy to do a perfect integration, clicking on the top left button (next to the
‘Global Challenges Portal’ name), it is possible to hide the menu, so applications are shown in
full screen (like the next figure shows with CKAN).

= Global Challenges Portal a O 2

i Fuaviernieto @ 0 o @

e & 2
(‘jﬁ‘(\/_\ H | D A L G O Datasets Organizations Groups About
G

Search data

Welcome on HIDALGO CKAN portal. HIDALGO CKAN portal statistics

44 datasets 11 organizations 0 groups

© All rights reserved 2020

Figure 51 Access to CKAN from the Frontend hiding the menu

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 75 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

e@ HiDALGO

12Available Infrastructures

12.1 Integration Infrastructure

For development and testing purposes of the services in HIDALGO project the Integration
Infrastructure has been set up. The machines are set up and managed via Openstack
environment.

Several services running on Integration Infrastructure have been described in D5.3[2]. Since
then several new machines have been set up, as seen in Table below. It must be taken into
account that the domain name is not the full URL to access the services.

Service CCoPrLer RAM VM Public IP Domain Name
Streaming 4 8GB | 62.3.171.145
Visualization 4 8GB | 62.3.170.209
Support ticket 4 8GB | 62.3.171.210
Askbot 4 8GB | 62.3.171.76
Cloudify 4 8GB | 62.3.171.103
Matchmaking 4 8GB | 62.3.171.89
Zabbix 4 8GB | 62.3.171.109
Moodle 4 8GB | 62.3.171.102
Jenkins 4 8GB | 62.3.171.42
FrontEnd 4 8GB | 62.3.171.105
IDM 4 8GB | 62.3.170.212
Wiki 2 4GB | 62.3.171.187
Coegss-spark 32 32GB | 150.254.165.237
Notebook 6 12G | 62.3.171.147

Table 10 List of VMs in the Integration Infrastructure

12.2 Deployment Infrastructure

The deployment infrastructure is available in the same way as the integration one. In this case,
the VMs are hosted at HLRS, also following a Cloud solution. In this case, the available VMs
are listed in the following table.

Service VM Public IP Domain Name

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 76 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://sophora-210.man.poznan.pl
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://hidalgo-cfy.hlrs.de/
http://sophora-89.man.poznan.pl/match-api/v0/questions
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://sophora-102.man.poznan.pl
https://sophora-42.man.poznan.pl/
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://sophora-187.man.poznan.pl
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1

N
é@ HiDALGO

Moodle 141.58.0.224 | https://moodle.hidalgo-project.eu/
Cloudify 141.58.0.227 | https://cloudify.hidalgo-project.eu/
Zammad 141.58.0.231 | https://support.hidalgo-project.eu/
Matchmaking No public IP

Jenkins 141.58.0.225 | https://hidalgo-jenkins.hlrs.de/

Wiki 141.58.0.223 | https://wiki.hidalgo-project.eu/

CKAN 141.58.0.226 | https://ckan.hidalgo-project.eu

Askbot 141.58.0.228 | https://askbot.hidalgo-project.eu
Zabbix Monitoring | 141.58.0.222 | hidalgo-monitor.hlrs.de

Keycloak IDM 141.58.0.229 | https://hidalgo-idm.hlrs.de/auth/
;(;g(aelnFcnlfontend & 141.58.0.230 | portal.hidalgo-project.eu

Notebook 141.58.0.232 | notebook.hidalgo-project.eu

Notebool compute |\, i p

Notebook compute | o o i p

Visualizer 141.58.0.233 | https://visualization.hidalgo-project.eu/
COVISE 141.58.0.233 | https://visualization.hidalgo-project.eu/

Table 11 List of VMs in the Deployment Infrastructure

12.3 Training Infrastructure

Training infrastructure is a set of nodes on Eagle that aim to bring real-time HPC on a smaller
scale for testing and demonstration purposes.

Head node
8 cores
16 GB RAM

AN

Training node
32 cores
32 GB RAM

Training node
32 cores
32 GB RAM

~—

Figure 52 Architecture of Training Infrastructure nodes

Training node
32 cores
32 GB RAM

Training node
32 cores
32 GB RAM

Document name: 35.6 Second HIDALGO Portal Release and System Operation Page: 77 of 83
eport
Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

LGOS
é@ HiDALGO

It consists of 4 training nodes, where computation takes place and less powerful head node
for commissioning work. All the nodes are connected to a network storage. They are equipped
with SLURM workload manager and all the necessary libraries for pilot development. For
security purposes the network is isolated apart from head node, and private addresses are
used.

It can be accessed via SSH protocol, but it is also integrated with Cloudify service, which allows
any user to perform work on it.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 78 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

é@ HiDALGO

13Conclusions

This document describes the progress done in the second release of the HiDALGO Portal,
including a description on how the feature was implemented, the APIs available and how it
can be used. The progress done with respect to the previous version is important, since we
added more features in several areas: applications execution, data management, users
support, visualization, orchestration, users management and CI/CD. We added new tools for
users support (now, besides training, we have a ticketing system and the Askbot, together
with a Wiki with documentation) and we also included the Notebooks. We have now more
tools for visualization, with more features and easily integrable with the Portal (Visualizer and
COVISE). It is also interesting to highlight the availability of a new infrastructure for training.

All the implemented features facilitate the user experience with HIDALGO and open the
opportunity to provide more and better services. The fact that the Frontend puts them
together is good in order to have a one-stop-shop, even if we have a very complex system,
made of many different technologies and languages.

Comparing the list of features to the original roadmap, we can say that most of the expected
features are available, although there is still room for improvement. For instance, the look
and feel of the Frontend needs to be improved and, therefore, several modifications are being
implemented. It is also to provide a more user-centric approach, so we have defined some
ways to collect information about the Portal usage and users’ opinions, so we will be able to
improve the Portal in the last release.

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 79 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

@ HIDALGO

References

[1] HIDALGO, D5.2 - Portal Architecture and Roadmap. Carnero, Javier et al. 2019.

[2] HIDALGO, D5.3 - First HIDALGO Portal Release and System Operation Report. Nieto, F.
Javier et al. 2019.

[3] HIDALGO, Dé6.1 - Requirements Process and Results Definition. Maritsch, Martin et al.
2019.

[4] HIDALGO, D6.4 - Initial Report on Requirements, Components and Workflow Integration.
Tsoumakos, Dimitrios et al. 2019.

[5] HIDALGO, D5.4 - HiDALGO Support Concept. Rajagopal, Dineshkumar et al. 2020.

[6] HIDALGO, D6.2 - Workflow and Services Definition. Maritsch, Martin. 2019.

[7] Jenkins. URL: . Last visited in December 2019.
[8] Moodle Training Service. URL: . Last visited in December 2019.
[9] CKAN: , last visited in December 2019

[10]Apache Groovy Language, https://groovy-lang.org/

[11]Keycloak Server Administration Guide. URL:
https://www.keycloak.org/docs/latest/server_admin/, last visited in December 2020

[12] About Cloudify. URL: https://docs.cloudify.co/5.0.0/about/, last visited December 2020

[13]OASIS. Security Assertion Markup Language (SAML) 2.0 Technical Overview. 22" July
2004. . Last visited in
December 2020.

[14] OpenlID. OpenlD Connect Core 1.0. 8" November 2014.

[15]CAS Protocol 3.0 Specification, Apereo and Yale University. 13t January 2015.
. Last visited
January 2021

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 80 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://jenkins.io/
https://www.moodle.org/
https://ckan.org/
http://xml.coverpages.org/SAML-TechOverviewV20-Draft7874.pdf
https://apereo.github.io/cas/5.1.x/protocol/CAS-Protocol-Specification.html

A

@ HIDALGO
[16] OASIS. TOSCA Simple Profile in YAML Version1.3. 18t September 2019.

. Last visited December 2020.

[17] Topology and Orchestration Specification for Cloud Applications Version 1.0. 25
November 2013. Oasis Standard. URL:
, last visited December 2020

[18] Croupier GitLab Repository. URL:

[19]Apache Mesos REST API v1.0 -

[20]HIDALGO, D5.1 - HiDALGO System Environment. Abhishek et al. 2019.
[21]Wiki.js official documentation,

[22]Web Content Accessibility Guidelines (WCAG) 2.0, W3C Recommendation 11 December
2008. URL: , last visited April 2021

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 81 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://github.com/ari-apc-lab/croupier
http://mesos.apache.org/documentation/latest/endpoints/
https://docs.requarks.io/
https://www.w3.org/TR/WCAG20/

N
e@ HiDALGO

Annex 1: Jenkins Pipeline Definition for Zammad

#!/usr/bin/groovy

pipeline {
agent {label 'master'}

options {
disableConcurrentBuilds ()

}

environment {

PYTHONPATH = "S${WORKSPACE} /"
}
stages {
stage ("Integration - Install") {
steps { integration() }
}
stage ("Integration - Test") {

steps { runUAT ("sophora-210.man.poznan.pl", "https") }
}
stage ("Approve for Production") {
steps { approve() }
}
stage ("Deployment - Install") {
steps { deploy() }
}
stage ("Deployment - Test") {
steps { runUAT ("support.hidalgo-project.eu", "https") }
}

}

def integration () {
sh "ansible-playbook -i
Jenkins/Inventory/zammad integration.INI ./zammad-integration.yml --vault-
password-file=~/HiDALGO/VaultPassword/zammad vault.txt"
}

def deploy () {

sh "ansible-playbook -i Jenkins/Inventory/zammad.INI ./zammad-
deployment.yml --vault-password-
file=~/HiDALGO/VaultPassword/zammad vault.txt"
}

def approve () {
try {
timeout (time:1, unit:'DAYS') {
input ('Do you want to deploy to live?')
}

} catch(err) {

def user = err.getCauses () [0].getUser ()

if ('"SYSTEM' == user.toString()) { // SYSTEM means timeout.
didTimeout = true

} else {

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 82 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

A

e@ HiDALGO

userInput = false
echo "Aborted by: [S{user}]"

}

def runUAT (hostname, protocol) {
sh "Tests/ping cloudify.sh ${hostname} ${protocol}"
}

D5.6 Second HIDALGO Portal Release and System Operation

Document name:
Report

Page: 83 of 83

Reference: D5.6 |Dissemination: PU Version: |1.2 Status: Final

