
DisclaimerThis document is issued within the frame and for the purpose of the HiDALGO project. This project has received funding from the EuropeanUnion’s Horizon2020 Framework Programme under Grant Agreement No. 824115. The opinions expressed, and arguments employedherein do not necessarily reflect the official views of the European Commission.This document and its content are the property of the HiDALGO Consortium. All rights relevant to this document are determined by theapplicable laws. Access to this document does not grant any right or license on the document or its contents. This document or its contentsare not to be used or treated in any manner inconsistent with the rights or interests of the HiDALGO Consortium or the Partners detrimentand are not to be disclosed externally without prior written consent from the HiDALGO Partners.Each HiDALGO Partner may use this document in conformity with the HiDALGO Consortium Grant Agreement provisions.(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement;CI: Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

HiDALGO
D5.6 Second HIDALGO Portal Release and

System Operation Report

Keywords:
HPCaaS, HIDALGO, CoE, Portal, Web, Entrypoint, CI/CD infrastructure, SSO, workflows,
training, data management, visualization, support tools, interactive notebooks

Document Identification
Status Final Due Date 30/09/2020
Version 1.2 Submission Date 16/04/2021

Related WP WP5 Document Reference D5.6
RelatedDeliverable(s) D5.1, D5.2, D5.3, D5.7 Dissemination Level (*) PU
Lead Participant ATOS Lead Author F. Javier Nieto (ATOS)
Contributors USTUTT, PSNC,

ECMWF, ICCS, KNOW
Reviewers Tamás Tomaschek

(MK)
Marcin Plociennik
(PSNC)

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 2 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Document Information
List of Contributors

Name Partner
F. Javier Nieto ATOS
Raúl Santos ATOS
Dineshkumar Rajagopal USTUTT
Anna Mack USTUTT
Krzesimir Samborski PSNC
Marcin Lawenda PSNC
Claudio Iacopino ECMWF
Milana Vuckovic ECMWF
Konstantinos Nikas ICCS
Manuela Rauch KNOW

Document History
Version Date Change editors Changes
0.1 22/07/2020 F. Javier Nieto TOC.
0.2 07/08/2020 F. Javier Nieto Updated ToC, introduction
0.3 15/08/2020 K. Samborski, D.Rajagopal Contributions to section 3, 5.1.1, 6, 11,12, 13, 13.2
0.4 17/08/2020 C. Iacopino Contributions to section 5.1
0.5 20/08/2020 A. Mack, M. Rauch Contributions to section 8
0.6 10/09/2020 K. Samborski, D.Rajagopal, F. J. Nieto,K. Nikas, M. Vuckovic

Updates in section 3, contributions tosection 4, 9, 10 and 12. Update ofsection 5
0.7 29/09/2020 M. Lawenda Section 7
0.8 14/12/2020 F. J. Nieto, R. Santos Updates in section 11
1.0 15/01/2021 F. J. Nieto Several modifications (section 2, 5, 11)
1.1 16/03/2021 D. Rajagopal, K. Nikas Address internal review comments(section 6 and 10)
1.2 06/04/2021 F. J. Nieto Complete modifications for addressinginternal review comments (section 2 to11)

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 3 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Quality Control
Role Who (Partner short name) Approval Date
Deliverable leader F. Javier Nieto (ATOS) 15/04/2021
Quality manager Marcin Lawenda (PSNC) 15/04/2021
Project Coordinator Francisco Javier Nieto (ATOS) 16/04/2021

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 4 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Table of Contents
Document Information..2
Table of Contents...4
List of Tables..7
List of Figures...8
List of Acronyms .. 10
Executive Summary ... 11
1 Introduction..12
1.1 Purpose of the document..12
1.2 Relation to other project work .. 12
1.3 Structure of the document..12

2 Features, Architecture and Roadmap...14
2.1 Current Features Available .. 14
2.2 Current Portal Architecture ...15
2.3 Portal Roadmap Implementation .. 16

3 CI/CD Infrastructure..20
3.1 Implemented Solution...20
3.1.1 CI/CD Infrastructure with Jenkins..20
3.1.2 Components Monitoring with Zabbix..22

3.2 Usage and Examples..24
3.2.1 Development Pipelines..24
3.2.2 Zabbix Monitoring..25

4 Single Sign On..29
4.1 Implemented Solution...29
4.2 Available APIs...30
4.3 Usage and Examples..31

5 Workflows Orchestration..32
5.1 Implemented Solution...32
5.1.1 European Weather Cloud...32

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 5 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

5.1.2 CKAN Client Support ..33
5.1.3 Implementation of the Apache Spark Extension ... 34

5.2 Available APIs...35
5.3 Usage and Examples..36

6 Training ... 37
6.1 Implemented Solution...37
6.2 Available APIs...38
6.3 Usage and Examples..39

7 Data Management and Catalogue..41
7.1 Implemented Solution...41
7.1.1 Polytope...41
7.1.2 Choropleth Map for CKAN...41
7.1.3 Datasets Sharing ..42

7.2 Available APIs...43
7.3 Usage and Examples..44
7.3.1 Polytope...44
7.3.2 Choropleth Map...47

8 Visualization..48
8.1 Implemented Solution...48
8.1.1 Visualizer..48
8.1.1 COVISE..48

8.2 Available APIs...49
8.2.1 Visualizer..49
8.2.1 COVISE..51

8.3 Usage and Examples..52
8.3.1 Visualizer..52
8.3.1 COVISE..53

9 Support Tools..56
9.1 Implemented Solution...56
9.1.1 WiKi..56

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 6 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

9.1.1 Askbot..57
9.2 Available APIs and Usage...58
9.2.1 WiKi..58
9.2.2 Askbot..58

9.3 Usage and Examples..59
10 Interactive Notebooks...62
10.1 Implemented Solution...62
10.2 Available APIs...64
10.3 Usage and Examples..65

11 Frontend and Applications GUI...68
11.1 Implemented Solution...68
11.1.1 Integration of the Portal Components...68
11.1.2 Execution of Workflows...69
11.1.3 User Matchmaking...70
11.1.4 Usability, Users’ Feedback and Monitoring...70

11.2 Available APIs...72
11.3 Usage and Examples..73
11.3.1 Using the Backend API...73
11.3.2 The Frontend Web GUI..74

12 Available Infrastructures...76
12.1 Integration Infrastructure..76
12.2 Deployment Infrastructure..76
12.3 Training Infrastructure...77

13 Conclusions ...79
References...80
Annex 1: Jenkins Pipeline Definition for Zammad...82

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 7 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

List of Tables
Table 1 List of acronyms..10
Table 2 Original features proposed for MS4 vs current implementation...17
Table 3 Original features proposed for MS5 vs current implementation...18
Table 4: List of courses, course instructors and the objective of the course is detailed here.................................24
Table 5: Cloudify blueprint for defining the workflow of Apache Spark word count application...........................35
Table 6: List of courses, course instructors and the objective of the course is detailed here.................................37
Table 7 Specifications of the three VMs that host our jupyterhub installation..63
Table 8 Details of all the components that make up the jupyterhub installation..64
Table 9 New Methods of the Backend REST API..73
Table 10 List of VMs in the Integration Infrastructure...76
Table 11 List of VMs in the Deployment Infrastructure...77

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 8 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

List of Figures
Figure 1: Current architecture of the Portal__15
Figure 2: CI/CD Infrastructure with Jenkins and USTUTT Git repository.________________________________21
Figure 3: Jenkins credential store to manage the HLRS credentials. ___________________________________22
Figure 4: Jenkins project is configured to use Git credentials.__22
Figure 5: Zabbix monitoring Askbot response time.__23
Figure 6: Jenkins pipeline with six stages for Zammad.___25
Figure 7: Adding a new host in Zabbix. ___ 26
Figure 8: Adding a new web scenario in Zabbix. __ 27
Figure 9: Example of database trigger. ___ 28
Figure 10: Accessing metrics in Zabbix. ___ 28
Figure 11: Keycloak clients configuration. ___29
Figure 12: Keycloak OpenID endpoints. ___ 30
Figure 13: Keycloak registration form.__31
Figure 14: Users can self-register by using the “Create new account” button and self-sign-in by using the
“Keycloak SSO Oauth2” button.___38
Figure 15: Moodle email notification for course registration.__39
Figure 16: Home page details the list of available courses and its descriptions.__________________________39
Figure 17: Students can self-enrol the course by using the enrolment key.______________________________40
Figure 18: Content of the Cloudify and CKAN course. __ 40
Figure 19: Organization list in the CKAN.__42
Figure 20: Dataset form related to the HiDALGO organization. ______________________________________ 43
Figure 21: Dataset form related to the HiDALGO organization. ______________________________________ 44
Figure 22: The polytope web API interface – log in form. ___ 44
Figure 23: The polytope web API interface – new polytope request.___________________________________45
Figure 24: The polytope web API interface – request list. ___ 45
Figure 25: The polytope web API interface – request details. __ 46
Figure 26: Choropleth Map form view.__47
Figure 27: Example of choropleth map – Internet users per 100 people. _______________________________ 47
Figure 28: Visualizer showing multiple coordinated visualizations____________________________________49
Figure 29: COVISE GUI __ 51
Figure 30: Data selection in Visualizer__52
Figure 31: Visualizer table view ___ 52
Figure 32: Coordinated multiple views in Visualizer__53
Figure 33: COVISE web application___54
Figure 34: COVISE web application showing nitrogen oxide concentration in urban areas _________________ 54
Figure 35: COVISE web application showing airflow in urban areas___________________________________55
Figure 36: Wiki.js Software Stack. ___ 56
Figure 37 Example of notification email___58
Figure 38 Example email notification settings__59
Figure 39: Wiki sign-in and user registration page.__59
Figure 40: Admin UI for managing Users, Groups and Page rules. ____________________________________ 60
Figure 41: User can edit an existing page.___60
Figure 42: Users can create a new page with different editors. Markdown is used as the default editor.______61

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 9 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 43 HiDALGO's JupyterHub GUI __ 64
Figure 44 GUI for viewing, modifying and executing a notebook _____________________________________ 64
Figure 45 Example of accessing HiDALGO CKAN repository through HiDALGO's JupyterHub________________66
Figure 46 Using JupyterHub to retrieve and process weather and climate data__________________________67
Figure 47 HiDALGO Portal with the Training tool ___ 68
Figure 48 Implemented structure for execution workflows__69
Figure 49 Adding an application from the Frontend ___ 74
Figure 50 Accessing the Orchestrator GUI from the Frontend__75
Figure 51 Access to CKAN from the Frontend hiding the menu_______________________________________75
Figure 52 Architecture of Training Infrastructure nodes __ 77

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 10 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

List of Acronyms
Abbreviation /acronym Description
API Advanced Programming Interface
A&A Authentication and Authorization
CAS Central Authentication Service
CI/CD Continuous Integration / Continuous Deployment
DC Data Catalogue
DMS Data Management System
DRF Django-Rest-Framework
Dx.y Deliverable number y belonging to WP x
EC European Commission
FAQ Frequently Asked Questions
GDPR General Data Protection Regulation
GUI Graphical User Interface
HCMS Hybrid Multi-Cloud Management System
IdAM Intelligent Digital Asset Management
MooCs Massive Open Online Courses
MSX Project Milestone X
MVP Minimum viable product
OIDC OpenID Connect
Q&A Questions and Answers
REST Representational State Transfer
SAML Security Assertion Markup Language
SCM Source Control Management
SEO Search Engine Optimization
SPA Single-Page Applications
SSO Single Sign On
VM Virtual Machine
WCAG Web Content Accessibility Guidelines
WP Work Package Table 1 List of acronyms

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 11 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Executive Summary
This deliverable presents the second version of the HiDALGO Portal. First of all, it presents the
main features and the current architecture, highlighting the changes with respect to the first
version, which are focused on notebooks, a new frontend, the ticketing system,
documentation and some additional features in tools like the data management and the
orchestrator. Then, it presents the current implementation of the features. Such
implementation is focused on describing what was implemented (including some details
about the tools used), the APIs available (generally, REST APIs and online GUIs) and examples
on how to use the functionalities available. In this concrete version of the Portal, the
deliverable describes the solution for Continuous Integration and Continuous Deployment
(based on Jenkins), highlighting the pipelines used and the monitoring system based on
Zabbix. For the Single-Sign-On (based on Keycloak), the document describes the changes done
in the configuration and the integration with the rest of components. For the workflows
orchestration (based on Croupier), this document addresses the changes done to support
Apache Mesos and Spark, as well as the new ECMWF Cloud. The training tool (based on
Moodle) includes now more courses and we show some new examples. As the data
management and catalogue (based on CKAN), we address the addition of the Choropleth Map
extension and the data sharing features for CKAN, as well as the new Polytope tool for
collecting data from ECMWF. In the case of visualization (based on Visualizer and COVISE), the
document shows the new features, including new types of diagrams and 3D images that can
be embedded in websites. This document also extends the information about the support
tools (based on Zammad and Askbot). It also introduces the new interactive notebooks feature
(based on Jupyter), so users can now develop some test code and run it easily. The last feature
addressed is the new frontend, as the mean to centralize all the features and to provide some
enhanced functionality for executing applications. Finally, the document describes the
available infrastructure for integration and production deployments, as well as the new
infrastructure available for training, listing the Virtual Machines available and the components
deployed.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 12 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

1 Introduction

1.1 Purpose of the document
This document aims at describing the implementation of the second release of the HiDALGO
Portal (to be renamed as the Global Challenges Portal), which gives access to HiDALGO
services in a simple way, as a one-stop-shop. Such solution consists of a set of tools covering
several aspects useful for HiDALGO stakeholders, like training, execution of simulations,
visualization of results, user support, data management and even code testing in a simple
way.
The document goes through all the features implemented for the second version, including
the implementation of the frontend (and backend) that puts all of them together, reducing
the complexity to access the HiDALGO services.
Moreover, as a result of the review conducted in September 2020, we have included
additional information about improving the user experience, by monitoring how they use the
frontend and enabling the collection of feedback from their side. The adequate setup,
deployment problems and errors solved in some of the components delayed the release of a
fully functional version of the Portal release. Finally, we have also added additional
information about tools to analyse the frontend usability in a more autonomous way, as well
as a definition of the plans for involving external stakeholders in the testing and usage of the
HiDALGO Portal.
1.2 Relation to other project work
This document is directly related to D5.2[1] and D5.3[2], since they describe the features and
designs to be followed in the Portal implementation, according to the requirements defined
in D6.1[3] and D6.4[4], as well as the first implementation done. It is closely related to D5.4[5],
which provides many details about the tools used for supporting users. It is also related to the
workflows defined in D6.2[6] and WP4 in general (to be supported by the Portal). It is the
second release of the portal development in T5.3, that will be updated in D5.7.
1.3 Structure of the document
This document is structured in 11 major chapters:
Chapter 2 talks about the features that have been implemented in the context of the second
release of the Portal, in line with the designs done previously (D5.2[1] and D5.3[2]).

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 13 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Chapter 3 to 11 describe how the features were implemented, the supported functionality,
the components used, the APIs available and how these features can be used in the context
of HiDALGO.
Chapter 12 provides a description of the infrastructure in which the components have been
deployed, both for integration and operation, including also information about the training
infrastructure.
Chapter 13 just provides a summary and a set of conclusions obtained after the current
implementation.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 14 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

2 Features, Architecture and Roadmap

2.1 Current Features Available
The list of desired features and user stories were defined in the context of D5.2[1]. The
features were categorized as application execution, application visualization, interactive code,
data management, data visualization, user community support, user discovery, centralized
user management and other/non-functional aspects.
The progress towards features implementation has been done in several aspects. First of all,
the application execution part has been improved, facilitating themanagement of applications
and the generation of forms for collecting the inputs, so the execution configuration will be
easier. There are ongoing developments for including integration with the data catalogue in
order to make even easier the selection of input files for the applications. This will be also
linked with the visualization once the results are available, so it will be easier to visualize
results fast, linking to Visualizer and COVISE.
The usage and orchestration of resources has also improved by enhancing the support to the
existing infrastructures (i.e. the HPDA one), starting the access to new infrastructures (like the
one from ECMWF) and even the support to data management.
In the case of data management, Polytope facilitates now the access to ECMWF data, so
coupling will be easier and more effective. Also, there is more progress with respect to the
features of the data catalogue (i.e. easier sharing of information). Efficient data movement is
a topic that will be addressed in the future as well, since moving very large datasets through
CKAN has shown not to be very efficient.
The area of visualization has been improved with the addition of several features to Visualizer,
somore diagrams are available (and some 3D visualizationwork is ongoing, for richer diagrams
that could be very useful for scenarios like COVID-19 simulations) and a new version of COVISE
that generates HTML code for the 3D visualization of complex simulations, so now it is possible
to do a much better integration with the Frontend.
The second version of the Portal has also included several tools for enabling users support.
Now HiDALGO can offer a ticketing system, the Questions and Answers (Q&A) forum and a
good documentation through the Wiki.
Finally, the online Notebooks are already available, so stakeholders can create their
prototypes of code online and test it before launching very large executions and integrating
chunks of code in complex software applications. This tool will be further developed in the
future, since there is a lot of room for improvement with more libraries, tools, examples, etc.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 15 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

2.2 Current Portal Architecture
Taking into account the requested features and the current implementation, we have defined
the architecture that has been followed during the implementation. It is based on the previous
one defined under D5.2[1], with a few modifications related to experience granted during the
previous implementation and to the features that were expected for M24.

Figure 1: Current architecture of the Portal
In the end, the architecture is very similar. It has two main central points: the Frontend and
the Authentication & Authorization. In that sense, now the architecture is a bit more specific
with respect to differentiating the tools for supporting users and the documentation (the
Ticketing System was added, as well as the Documentation Wiki). It also adds more links with
the Authentication & Authorization (the other components need to check security tokens in
order to enable an authorized access to the functionalities), since this is not centralized
through the Frontend.
Finally, although the Frontend centralizes the access to the rest of functionalities, these are
external tools, and those internal to the Frontend (applicationsmanagement) are not included
as part of the high-level picture. Instead, we highlight the presence of the backend and the
Portal storage. The reason for the selection of this architecture is because the Frontend

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 16 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

represents the one-stop-shop of HiDALGO, so all the components can be accessed (it embeds
the GUI of other components or it links to them, in case it is not technically feasible).
The Backend takes care of the background connection with components like the Orchestrator,
also guaranteeing that security is addressed, separating the business logic from the GUIs
(Frontend). Although it is possible to access the Orchestrator through its GUI, such possibility
will be disabled for most of the users (only administrators will be able to access to it). Finally,
the Portal Storage takes care of information that the Backend needs to manage (such as the
applications available, instances, etc.).
2.3 Portal Roadmap Implementation
Deliverable D5.2[1] was proposing a roadmap related to the potential user needs. For the first
version, the focus was on enabling the execution of applications, as well as features related
to users’ management and data management (the catalogue, basically). In the case of the
current version, it was important to progress more in previous features and to increase the
support to applications execution, as well as data management and visualization.
Additionally, there was more progress with respect to user support and the usage of
notebooks in order to facilitate code prototyping.
After the implementations, we have re-checked the implementation status with respect to
the roadmap defined initially for MS4.

MainComponent Original Plan for MS4 CurrentImplementation
Single Sign On Login once and access all the services Partially Done

All services connected to one account Partially Done
Users to sign up themselves Done
Manage users’ roles and permissions Done
Group permissions and assign users to certain groups Done

PortalMaintenance Have a sandbox environment, in order to test changesquickly without risk Done
Test changes automatically, so new features do notbreak other parts of the code Done

ApplicationExecution Execute a pilot and retrieve the results that areinteresting to me Done
Abstract users from the complexity of the underlyinginfrastructure Done

ApplicationStatus Know the status of a running pilot, so users may Done

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 17 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

MainComponent Original Plan for MS4 CurrentImplementationVisualization access partial results if they want to
Check the logs of a pilot execution in order to knowwhat happened Postponed

Explore andManage Data Allow users to explore the data available, so they cansee data that can be used Done
Create a public dataset and share it with other users,if the user wants to Done
Create private datasets, so only concrete users (orgroups of users) may know about it Done

InternalStorage Store small input datasets in the platform, so they canbe used for running pilots Done
ExternalStorage Use datasets stored outside HiDALGO in order toexecute pilots Done
Visualization Visualize datasets, so it is possible to showdemonstrations Done

Visualize datasets with temporal information, so it ispossible to understand them Done
Book Have all documentation organized for users Postponed

Developers can treat documentation as code, so it iseasier to keep it updated Partially Done
Make available information for running pilots and forusing the provided UIs Partially Done

Support Enable the possibility to keep on discussions throughemail for general support information Done
Non-Functional Make the UI compliant with GDPR, so there will notbe any legal issues Partially Done

Table 2 Original features proposed for MS4 vs current implementation
We have also analysed the roadmap expected for MS5, related to M24, since the Portal was
expected to release additional features. The analysis is in the following table.

MainComponent Original Plan for MS5 CurrentImplementation
ApplicationExecution Full abstraction of the technical complexity for usersthat want to run an application Partially Done

Possibility to easily add new applications and pilots toHiDALGO through the UI Done

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 18 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

1 https://www.reachout-project.eu/view/Main/

MainComponent Original Plan for MS5 CurrentImplementation
ApplicationStatusVisualization

Visualize workflow execution stages in real time Ongoing

Explore andManage Data Allow users to access datasets information aboutformat, quality and quantity Done
InternalStorage Store large input datasets in the platform, so they canbe used for running pilots Done
ExternalStorage Allow to store produced datasets outside HiDALGO Done
Visualization Visualize simulations results, so users can validatethem Done

Visualize datasets with geospatial information, so it ispossible to understand them Done
Visualize 3D information in such a way it can beunderstood by users Done

Support Enable the possibility to keep on discussions throughan open discussion forum Done
Provide a FAQ, so repetitive questions can be easilyanswered for stakeholders Postponed

Non-Functional Provide a reliable UI that is accessible whenever it isnecessary Postponed
Provide secure UI infrastructure, that avoids maliciousattacks Done

Table 3 Original features proposed for MS5 vs current implementation
Additionally, we have defined a process for opening the Portal to the public, so stakeholders
will be able to use HiDALGO services through this release of the Portal. We plan to organize
internal demonstrations, followed by a beta testing campaign (that will involve also external
stakeholders). After such beta testing campaign, the Portal will be open for the public. The
expected plans are:

 April 2021: Internal demos and testing with HiDALGO partners, collecting feedback
directly and organizing several teleconferences;

 May-July 2021: Beta testing campaign organization and execution (we consider a
collaboration with the ReachOut1 project, since the tools provided are useful for
collecting feedback);

https://www.reachout-project.eu/view/Main/

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 19 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

 September 2021: The Portal will be open for all stakeholders and we will invite some
of the members of the Associated Partners programme to use HiDALGO services.

As a result of the internal and beta testing campaigns, we will also test new look and feels for
the Portal, in order to improve usability as much as possible.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 20 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

3 CI/CD Infrastructure
Software development process follows the various steps from the requirement gathering to
the deployment of the application on the infrastructure, and it can be optimized with the
Continuous Integration (CI) and Continuous Deployment (CD) methodology to improve the
quality of the product development. Jenkins[7], Git and Ansible are the well-known tools used
for supporting CI/CD methodology, which is installed as mentioned in D5.3[2] for providing
the experience of seamless integration and deployment within the project. Jenkins is
successfully adopted within the portal development to automate the integration, deployment
and testing of its services by using the Ansible scripts. Ansible is an automatic application
deployment tool, which is used with Jenkins for automating the application deployment in
the cloud infrastructures. Moodle[8], Cloudify[12] and Matchmaking services were already
deployed using Ansible script and defined the Jenkins pipeline for the different steps like
integration, testing and deployment. Jenkins and its current setup satisfied the project goals,
so the changes are only limited with the secure usage of USTUTT Git repository and the
provisioning of new Jenkins pipeline for the portal services (Askbot and Zammad) as detailed
in the rest of this chapter.
3.1 Implemented Solution

3.1.1 CI/CD Infrastructure with Jenkins
The portal development in HiDALGO, as well as the overall chosen deployment strategy,
follow well-known CI/CD patterns and best practices to automate the complete software
development process. This process is detailed in the previous deliverable D5.3[2] by discussing
the selected CI/CD tools, namely Jenkins for automatically building and testing software, and
Ansible for automated deployment of the built artefacts. Jenkins acts as a middle-man
between developers and infrastructures to automate the process of application development
as defined in Jenkins pipelines.
Currently, a single Git deployment account is created for the HiDALGO project, which is
restricted with read-only permissions, and is therefore only used to fetch the source code
during the deployment phase. USTUTT Git is securely integrated with Jenkins by using Jenkins
credential store, which is one improvement from the D5.3[2] in the CI/CD infrastructure as
depicted in Figure 2, which reflects the current workflow.
The specific Jenkins workflow is detailed below; it ranges from building of a Jenkins pipeline
to the deployment of applications in the corresponding Virtual Machine (VM). Each service is
provided with two VMs for integration and deployment, which is detailed in Chapter 13.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 21 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

1. The portal developer or administrator can submit a manual Web request to build a
new Jenkins pipeline by using the Jenkins Web GUI. After successful submission and
processing of the request, the pipeline is built locally in the Jenkins VM and provides
access to the cloud VMs and the USTUTT Git repositories.

2. During the build of the Jenkins pipeline, the latest source code of the Ansible script is
downloaded from the USTUTT Git repository for deploying the services in cloud VM.

3. The Jenkins pipeline is defined in Groovy[10] language, which automates the different
stages of the software development pipeline. Currently, software deployment is
automated with Ansible and the functional tests are conducted with basic shell scripts
to ensure the correctness of installations. Bash scripts and Ansible scripts are run as a
separate command within the Jenkins pipeline to perform the corresponding stages
and provide log details of each stage in the Jenkins GUI.

4. Ansible connects with the respective cloud VMs remotely and fetches the latest source
code of the corresponding service from USTUTT Git repository for deploying that
service in the cloud VM.

Figure 2: CI/CD Infrastructure with Jenkins and USTUTT Git repository.
USTUTT Git relies on password-based authentication, so a Jenkins project usually includes a
Git URL with the password for fetching the corresponding Git repository. This is improved
right now by enabling the Git plugin and credentials store in the Jenkins configurations to
fetch a Git repository without passing password values in a plain text. Jenkins’ credentials
store is designed to store the credentials of external applications securely so that a Jenkins
project or Jenkins pipeline can refer to the credential store instead of providing plain

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 22 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

2 HiDALGO Jenkins weblink - https://hidalgo-jenkins.hlrs.de

credential in a hard-coded manner; the mechanism improves the overall security of
operations. Jenkins credential store is managed by the administrator as shown in Figure 3 for
storing the USTUTT Git credentials. The Jenkins pipeline is configured to use Jenkins credential
store for accessing USTUTT Git SCM (Source Control Manager) as shown in Figure 42.

Figure 3: Jenkins credential store to manage the HLRS credentials.

Figure 4: Jenkins project is configured to use Git credentials.
3.1.2 Components Monitoring with Zabbix

Zabbix is an enterprise-level software designed for real-time monitoring of millions of metrics
collected from tens of thousands of servers, virtual machines and network devices. Although
there are other tools available (like Prometheus, Nagios, etc…), Zabbix was selected because

https://hidalgo-jenkins.hlrs.de

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 23 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

it provides several required features by default, it is easy to configure and it performs as
needed.

Figure 5: Zabbix monitoring Askbot response time.
Zabbix allows for monitoring any metric that can be obtained from the service, without
interfering it. Moreover, it is possible to install Zabbix client on a service machine to gain
access to internal variables, like CPU and RAM usage or IO delays.
Zabbix agents support both passive (polling) and active checks (trapping). Zabbix may perform
checks based on an interval, however, it is also possible to schedule specific times for item
polling. The following list of checks is supported by Zabbix agent out of the box:

 Network: packets/bytes transferred, errors/dropped packets, collisions
 CPU: load average, CPU idle/usage, CPU utilization data per individual process
 Memory: free/used memory, swap/pagefile utilization
 Disk: space free/used, read and write I/O
 Service: process status, process memory usage, service status, DNS resolution, TCP

connectivity, TCP response time
 Files: file size/time, file exists, checksum, MD5 hash, RegExp search
 Logs: text log, Windows eventlog
 Other: systemuptime, system time, users connected, performance counter (Windows)

The usage of Zabbix is focused on the monitoring of the Portal components. For each
component deployed, we have been creating the corresponding hosts and metrics in Zabbix,
in such away it is possible tomonitor their availability, response time, resources consumption,
etc… This information may be also useful in order to scale (up or down) the VMs and
containers resources accordingly. The services and items monitored by the time we write this
report are listed in the following table.

Host Monitored Items
Askbot
(https://askbot.hidalgo-project.eu/)

Download speed
Last error message
Response code

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 24 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Host Monitored Items
CKAN
(ribes-212.man.poznan.pl
ribes-21.man.poznan.pl
ribes-135.man.poznan.pl
rhus-134.man.poznan.pl),
Streaming
(http://sophora-145.man.poznan.pl)

Database status
Services status
Webserver status
CPU load
Disk utilization
Disk read/write rates
Number of logged in users
Number of running processes
System boot time
Network speed
Network errors
Available memory
Checksum of /etc/passwd
Zabbix agent availability

Table 4: List of courses, course instructors and the objective of the course is detailed here.
CKAN and Askbot are currently included in Zabbix to monitor its availability and status, which
will be further extended in the project duration to include all other services and portal for
supporting the automatic application monitoring. Moodle, Cloudify, Wiki.js, Zammad,
Interactive notebook, Visualization tools and Portal will be monitored in a single place with
Zabbix to ensure the correct operations of HiDALGO portal by the system administrator.

3.2 Usage and Examples
3.2.1 Development Pipelines

An automatic software development pipeline (or Jenkins pipeline) consists of multiple stages
and each stage runs specific functionalities with multiple tools to automate the software
development activities (i.e. compile, run automated tests, etc). Six stages are defined in the
Jenkins pipeline, which is detailed below.

1. Checkout SCM - Clone the Jenkins pipeline and Ansible scripts to Jenkins workspace2. Install in the integration infrastructure - Build or install in the integrationenvironment3. Integration test – Test the basic functionalities by using the ping and curl commands

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 25 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

3 HiDALGO Jenkins installation - https://hidalgo-jenkins.hlrs.de/job/zammad/

4. Manual approval for deployment – Wait for manual approval from developer oradmin5. Install in the deployment infrastructure - Build or install in the deploymentenvironment6. Deployment test - Test the basic functionalities by using the ping and curl commands
Jenkins pipelines were provided for Moodle, Cloudify and Matchmaking services as detailed
in D5.3[2], which is extended with Zammad and Askbot services. Zammad and Askbot are the
newly introduced services for providing customer support ticket and a community forum,
which both are automated through Jenkins pipelines; detailed in Appendix 1. The execution
of the Zammad pipeline is shown in Figure 63, and it is similar to other pipelines. Ansible script
is used for the installation of service in the integration and deployment VMs. The bash script
is used for testing the installation with ping and curl commands to ensure the verification of
installation.

Figure 6: Jenkins pipeline with six stages for Zammad.
3.2.2 Zabbix Monitoring

As Zabbix is set up, it is possible to check out the metrics already in place, but it is also possible
to include newmetrics and to monitor new components (seen as ‘hosts’ by Zabbix), as we add
them to the HiDALGO Portal.

Adding a new host

https://hidalgo-jenkins.hlrs.de/job/zammad/

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 26 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

It is necessary to first point to the service that is going to be monitored. In ‘Hosts’ submenu
under ‘Configuration’ tab, click ‘Create host’ button.
The required fields are:
• Host name – name displayed in Zabbix
• Groups – a group the server belongs to (as configured before)
• Interfaces - IP or DNS address with port

Figure 7: Adding a new host in Zabbix.

Adding a web scenario
Next important step is specifying what metrics should be collected, e.g. code returned from
the service. On the Host properties screen, access the ‘Web scenarios’ tab and click ‘Create
web scenario’ button.
In ‘Steps’ tab add new step and provide following info:

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 27 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

• Name – scenario identification.
• Application – previously defined application
• Update interval – time between checks (e.g. 1 minute)
• Agent – Zabbix
• Enabled – Yes

Figure 8: Adding a new web scenario in Zabbix.
Configuring Zabbix Agent
In order tomonitormore inaccessible internal metric it is necessary to first install Zabbix Agent
on the client machine:
sudo apt install zabbix-agent.
Now it is possible to add to the host new items that utilize Agent’s capabilities.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 28 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 9: Example of database trigger.
Testing and viewing data
After the service has been set up, it is now be monitored according to the items/scenarios. It
takes about 5 minutes to gather enough data for graphs to appear.
In order to view the data access the ‘Monitoring’ menu and click on the ‘Latest data’ option.

Figure 10: Accessing metrics in Zabbix.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 29 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

4 Single Sign On

4.1 Implemented Solution
As already explained in D5.3[2], Keycloak[11] was selected as the solution for Identity
Management (IDM) and Single Sign On (SSO) solution. At this stage, two instances of Keycloak
are available and connected to several components of the Portal. Keycloak supports several
protocols in order to enable SSO and, in this case, we are using OAuth2 (see standards like
OpenID[14] and SAML[13]) as the main way to do it. Central Authentication Service (CAS)[15]
has been considered for components like Moodle, but for the moment, we are using the same
solution for all the components, in order to ease maintenance.

Figure 11: Keycloak clients configuration.
One realm has been created and the list of clients is configured for such realm, according to
the components to be integrated. Up to now, the components integrated with the SSO are:
frontend and backend of the Portal, Moodle, CKAN, Jupyter notebooks and Zammad. The
initial configuration is already available for more components of the Portal, although such
integration is ongoing, since in some cases is more complicated to address, or it cannot be
addressed directly through the GUI, requiring a backend that takes care of the interaction (as
in the case of the Orchestrator).
As already explained in D5.3[2], each time a user needs to be authenticated, the components
contact Keycloak. If the user already logged in and has been granted access to the component,
Keycloak will provide the corresponding security token. Otherwise, Keycloak is the one
identifying the user.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 30 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

4 https://hub.docker.com/r/jboss/keycloak
5 https://hub.docker.com/r/jwilder/nginx-proxy
6 https://hub.docker.com/r/jrcs/letsencrypt-nginx-proxy-companion
7 https://hub.docker.com/_/postgres?tab=description&page=1&name=9.4

In order to facilitate the usage by stakeholders, the configuration is being changed in order to
enable self-registration of the users. This requires configuring a SMTP server, since it is
necessary to activate the email verification feature, for security reasons. Additionally, the
team is looking at the way to deal with temporary accounts that would be provided to
stakeholders, so they can be disabled when certain period expires. This feature will require
additional functionality in the frontend side in order to check users’ profiles.
The list of software components used is the following:

 Keycloak, version 12.044
 Nginx Proxy, version 1.19.35
 Letsencrypt Nginx Companion, version 2.1.06
 Postgres Database, version 9.4.267

4.2 Available APIs
As explained in D5.3, Keycloak follows several standards that have to do with IDM and SSO.
The most important interface in use is the OpenID[14] endpoints, which enable SSO through
OAuth2. Additionally, SAML2.0[13] is available, for identity provider metadata.

Figure 12: Keycloak OpenID endpoints.
Keycloak also has a web console which allows to manage realms, clients, users, configuration,
etc… This web interface also includes the forms for doing login and registration activities,
which are exposed by Keycloak.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 31 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

4.3 Usage and Examples
Deliverable D5.3[2] already described the main feature related to Keycloak and how to use
them. As shown in Figure 11, the Keycloak dashboard is the place to configure the realm
characteristics, as well as the clients, users and other aspects (groups, federations, etc.). In
the case of HiDALGO, the configuration was focused on the clients part, since each component
requires to configure a client.
Additionally, we recently changed the login configuration, so now users are allowed to self-
register, as a way to facilitate the involvement of stakeholders. Therefore, now the login form
has changed and, when selecting the ‘Register’ option, the following form has to be
completed.

Figure 13: Keycloak registration form.
After the form completion, the user receives an email to activate the account and it will be
possible to make login with the new user.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 32 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

5 Workflows Orchestration

5.1 Implemented Solution
5.1.1 European Weather Cloud

As part of the coupling of ECWMF weather data for the UAP and human migration pilots, the
HiDALGO orchestrator aims to access cloud resources hosted by the ECWMF European
Weather Cloud (EWCloud) to perform data retrieval and post-processing.
This integration with EWCloud aims at achieving the following:

 Reducing the size of the data that will be transferred to the pilot applications
 Allowing familiarisation with ECMWF data and its processing
 Offering an extendible platform for future applications

The remainder of this section gives a general overview of EWCloud, its capabilities and a status
of the integration.

European Weather Cloud
In December 2018, ECMWF and EUMETSAT joined forces to set up a federated Cloud
Computing infrastructure focused on meteorological data. The vision is to establish a
“EuropeanWeather Cloud” to serve the EuropeanMeteorological Infrastructure and its users.
ECMWF is currently running a pilot phase of two years, started in January 2019. EWCloud
revolves around the concept of “users-to-the data”, by providing to users transparent access
to services, infrastructure and data holdings based on agreed federation principles. Federation
in the EWCloud is a loose coupling and is implemented via the following elements:

 Common web presence
A single websitemarking theweb presence of the “EuropeanWeather Cloud”. Thewebsite
purpose is for communication and public relations.
 Hybrid Cloud Management System (HCMS)
The Hybrid Multi-Cloud Management System (HCMS) acts as an orchestration layer that
runs on top of cloud infrastructures and abstracts away the heterogeneity of the
underlying cloud technology (VMware, OpenStack or other) and geographical distribution
of infrastructures from the end-users perspective. The HCMS allows the creation and
management of processing environments (i.e. VirtualMachines, Kubernetes deployments)
in any of the underlying infrastructures. A COTS technology called Morpheus is used as
HCMS.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 33 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

 Harmonised Data Access API
ECMWF data holdings (MARS, C3S, CAMS, etc.) are accessible for downloading data, using
the existing APIs, both via the Internet and via EWCloud. The preferred option is, however,
to reduce as much as possible the transfer of data via the Internet and, instead, perform
computation close to the data by relying on a higher local network speed. This is the main
motivation for the integration of EWCloud with the Hidalgo orchestrator Cloudify
Croupier.

EWCloud-Cloudify Croupier Integration
Different level of integrations can be conceived between Cloudify Croupier and EWCloud. In
the current approach, ECMWF has setup a number of Virtual Machines (VMs) with the post-
processing capabilities required by the pilot applications. The intention is to allow Cloudify to
connect to these VMs via SSH and execute the algorithm required by the workflow.
Preliminary tests have been successfully conducted but a full integration has not been
achieved yet.

5.1.2 CKAN Client Support
As a way to ease data management tasks, the Croupier Orchestrator[18] now allows for the
definition of operations for datamovement and publication, embedded in the tasks definition.
In previous versions of the orchestrator, it was necessary to create a new ‘hpc.nodes.Job’ task
of type ‘SHELL’, which was running scripts accessing the CKAN Client. Although the scripts
have been improved, now it is also possible to have a normal HPC task (a ‘croupier.nodes.Job’)
which, at the end of the task definition, includes a new option called ‘data_mover_options’,
that specifies the configuration of data movement.
The current version of the Orchestrator now supports data movement with GridFTP (as a
result of the collaboration with the EUXDAT project), thanks to this ‘data_mover_options’ tag,
and it is supporting more and more features of the data movement through CKAN, in line with
the features provided by the CKAN Client. It is possible to use data publication in CKAN thanks
to this new option, and more developments are done in the scripts, so it will be possible to
move datasets with a concrete identifier or name.
The plan for the near future is to combine the usage of GridFTP and CKAN client depending
on the circumstances (the Orchestrator will make a choice) and some monitoring information
could be extracted from data movement tasks. Also, we will analyse how to support solutions
like Polytope (see Section 7), directly from the Orchestrator.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 34 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

5.1.3 Implementation of the Apache Spark Extension
Croupier is the plugin developed by ATOS for managing HPC applications in CoeGSS project,
which is further enhanced together with USTUTT in HiDALGO for executing Spark applications
in HPDA infrastructures. Croupier Apache Spark extension is based on the ApacheMesos REST
API v1.0[19] and the application submission command (spark-submit) for managing the
execution of Spark applications in USTUTT HPDA infrastructure. A potential target HPDA
infrastructure has therefore to support both the Apache Mesos REST API version 1.0 and
spark-submit command to interface croupier plugin with the infrastructure.
USTUTT offers access to a Cray Urika GX system within the project to execute Apache Spark
applications (cf. Deliverable D5.1[20] on page 12). This system is used for testing the Croupier
Apache Spark extension. As a first proof-of-concept, the well-known Apache Spark word count
example was successfully deployed through the plugin onto USTUTT’s infrastructure.
The Urban Air Pollution pilot intends to make significant use of Apache Spark in their
workflow. Thus, this pilot is considered as the first real-world application to test and evaluate
the developed Apache Spark extensions in croupier plugin. We will report on the findings in
the next iteration of this deliverable.
The Croupier plugin manages the operations of job submission, monitoring and cancelling of
jobs as mentioned below:

 There is no generic REST API for submitting jobs in Mesos scheduler, and it depends
on the framework used by the application. Spark application is initially supported with
the spark-submit command to submit jobs in batch mode, and the command manages
job submission withMesos scheduler. In the future, if there should be the requirement
to support a wider range of HPDA frameworks (e.g. TensorFlow), then the platform
has to provide the commands or procedures to submit jobs in batch mode.

 Apache Mesos provides a REST API to get the status of an application by using
/framework API. The API is used for sending the application status details to Cloudify
web GUI through the Croupier plugin.

 Apache Mesos provides a REST API to cancel the application during the application
execution by using /teardown API. The API is used for cancelling the application when
the user requests the cancellation from the Cloudify web GUI.

wordcount_job: # Spark Wordcount Applicationstype: croupier.nodes.Jobproperties:job_options:type: 'SPARK'pre: # Run commands before submitting applications- 'module load tools/proxy'application: {get_input: job_app_full_path} # Full path of *.jar or *.pyapplication_params: # New features to provide application parameters- {get_input: app_ip_forest_depth}- {get_input: app_ip_forest_trees}- {get_input: app_ip_training_ratio}

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 35 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

total_executor_cores: {get_input: job_executor_cores}# Nb of executor coresexecutor_memory: {get_input: job_executor_memory} # Size of executor memorydriver_cores: {get_input: job_driver_cores } # Size of driver coresdriver_memory: {get_input: job_driver_memory } # Size of driver memorypost: # Run commands after executing applications- 'module unload tools/proxy'deployment:bootstrap: 'scripts/download_input.sh' # Prologue scripts to download input filesrevert: 'scripts/upload_output.sh' # Epilogue scripts to upload output filesinputs:- { get_secret: hidalgo_ckan_key } # CKAN Key- { get_input: upload_file_location } # Upload file location- { get_input: download_file_location } # Download file locationTable 5: Cloudify blueprint for defining the workflow of Apache Spark word count application.
Table 5 provides the generic Cloudify blueprint for defining the workflow of word count
example as an Apache Spark application by using the following options (features are
highlighted in bold with inline comments prefixed by #):

1. application: This option provides the full path to the Apache Spark application.
Apache Spark applications are supported either as a compiled JAR or Python file.

2. class_name: By providing a JAR file as a full path, then the class name is required
to be provided as well in order to invoke an application.

3. application_params: This optional parameter allows to define additional
application parameters, which will be passed as arguments to the application.

4. total_executor_cores: The specified number of executor cores are used to
reserve the required amount of computing resources for execution.

5. executor_memory: Spark application submitted with the size of executor memory
specified here.

6. driver_cores: Spark application submitted with the number of driver cores
specified here.

7. driver_memory: Spark application submitted with the size of driver memory
specified here.

The Croupier Spark extension is available as a fork of the official Croupier plugin from ATOS
Github repository, and it has been merged with the official ATOS repository after completing
unit tests and code review. The documentation of Croupier will be updated accordingly in
order to provide details to the usage of the Apache Spark extension so that pilots can update
their blueprints according to their data analytics workflow needs.
5.2 Available APIs
The APIs of the Orchestrator component have not changedwith respect to the ones presented
in D5.3 (section 5.2). Since the API is the standard Cloudify interface, there are no changes at
all. Also, the blueprint included as example (in Annex 3 of D5.3) remains as a valid example on
how to run an example.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 36 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

As a new development, the backend of the Portal is now able to connect to the Orchestrator
through a specific client, so the frontend can be used now to run instances of workflows. Such
specific interface is shown in section 11.
5.3 Usage and Examples
The Orchestrator can be used directly through its own web interface, which was already
shown in the deliverable D5.3[2]. Table 5 shows an example of a blueprint for running an
application in a platform with Apache Spark. This example can be executed through the
command line interface, through the Orchestrator GUI or through the Frontend.
The new Frontend features and the implemented backend are described in Section 11 of this
document. Such section also shows examples for running applications through the
Orchestrator using the new Frontend.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 37 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

6 Training

6.1 Implemented Solution
Training is one of the key services of the HiDALGO portal. It is detailed in Deliverable D5.3[2]
together with the architecture and installation of the Moodle[8] application onto cloud VMs.
The service is further enhanced to support the features as per the needs of the project, which
is detailed below:

1. A self sign-in feature is enabled with email verification, so the user can register to
Moodle and verify their registration by a verification-link to improve security in the
user registration.

2. An official HiDALGO email (no-reply@hidalgo-project.eu) is set it up for sending email
notifications through Moodle. That enables us to send HiDALGO portal users course
notifications from an official email to ensure the authenticity of the communication.

3. A course instructor can upload the file with the size limit of up to 15MB, so large files
can be shared in the course instead of default 2MB.

The following HiDALGO courses are created and maintained by the course instructors as
mentioned in Table 6, and it is accessible by students after self-enrolling.

Course Name Purpose & Description CourseInstructor
Cloudify & CKAN Explains the Cloudify and CKAN tools. The mainobjective of the course is to define the workflow ofGSS or HPC applications in Cloudify.

USTUTT andPSNC
HiDALGO and itsServices Introduce available HiDALGO services. PSNC
Migration Pilot(Modelling and Tools) Tools used for developing theMigration applicationwith Python3. BUL
HPC usage tutorial Submit HPC applications using Slurm batchscheduler and MPI commands. PSNC
Social Networks Pilot Introduce the Social networks application,motivation and its workflow. PLUS
Urban Air Pollution(UAPv1.0) QuickStartTutorial for Beginner

Introduce the UAP application, motivation and itsworkflow. SZE

Table 6: List of courses, course instructors and the objective of the course is detailed here.

mailto:no-reply@hidalgo-project.eu

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 38 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

6.2 Available APIs
The Moodle is a standard web application with a GUI interface, which is detailed in the
previous Deliverable D5.3[2] to provide the base platform for offering HiDALGO online
courses. The system is enhanced with the new functionalities to support self-sign-in and
single-sign-on authentication as shown in Figure 14. OAuth2 protocol is configured in the
system to support the self-sign-on authentication and the feasibility to support the integration
with the portal. The system is also configured to support automatic E-mail notification, so the
user can get the regular notification through E-mail as shown in Figure 15. The system
supports automatic E-mail notification for the self-help functionalities activities such as the
user activation and course registration to avoid any manual intervention.

Figure 14: Users can self-register by using the “Create new account” button and self-sign-in by using the“Keycloak SSO Oauth2” button.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 39 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 15: Moodle email notification for course registration.
6.3 Usage and Examples
The service is mainly hosted for sharing the training materials with the end-users, so the
different courses are created for disseminating the course materials within HiDALGO
community. Figure 16 provides the list of available course in the moodle for self-study and it
is currently restricted with the self-enrolment key for the course registration as shown in
Figure 19. Courses are organized with different topics to share the slides, documents and ZIP
files in a central location as shown in Figure 18.

Figure 16: Home page details the list of available courses and its descriptions.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 40 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 17: Students can self-enrol the course by using the enrolment key.

Figure 18: Content of the Cloudify and CKAN course.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 41 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

7 Data Management and Catalogue

7.1 Implemented Solution
7.1.1 Polytope

We have implemented a polytope web API interface and polytope downloader tool that
facilitate the collection of data from ECMWF, served through the Climate Data Store (CDS).
The web interface is a standalone application that allows users to:

 Create a polytope data request
 Browse the requests done
 Download output data from the polytope servers

To get started you must have a valid API key from ECMWF. In the web interface you should
log in with your email and API key. Once this is configured, it is possible to use the forms in
order to specify the data to download and to check the historical data about the requests
done so far. It is important to clarify that it is a kind of intermediate system so, first, users do
the request (to the MARS system) and, then, they have to access the lists of requests and they
will be able to download the data once the request is finished.
Additionally, the users can also make use of the polytope downloader, which is a Python
script for download data, but through a command line. The polytope-downloader input
parameters are the following:

 --auth - auth data (email:key)
 --req - request id
 --path – output file path
7.1.2 Choropleth Map for CKAN

We have installed and configured the CKAN[9] extension named ckanext-mapviews. This
extension adds regular and choropleth maps to CKAN, using the new Resource View being
developed on CKAN's master branch (currently unreleased). The current version of CKAN
deployed in HiDALGO is v2.9.2.
To start creating choropleth maps, you need two things: the data you want to plot, and a
GeoJSON defining the geographical regions you'd like to plot it. The data itself needs to be in
a resource inside the DataStore, and the map needs to be in the same domain as CKAN itself
(to avoid same-origin policy issues). The easiest way to do so is to upload the GeoJSON as
another resource.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 42 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Each GeoJSON feature needs a property related to a column in the data. It can be an id, name,
or anythings that uniquely identifies that feature, so we know where to plot the data.

7.1.3 Datasets Sharing
Organizations are the primary way to control who can see, create and update datasets in
CKAN. Each dataset can belong to a single organization, and each organization controls access
to its datasets.
Datasets can be marked as public or private. Public datasets are visible to everyone. Private
datasets can only be seen by logged-in users who are members of the dataset’s organization.
Private datasets are not shown in dataset searches unless the logged in user (or the user
identified via an API key) has permission to access them.
After some time of using the CKAN platform, we noticed that we needed the functionality of
sharing datasets between users from different organizations.

Figure 19: Organization list in the CKAN.
We have created a dedicated organization named HiDALGO. Each user of the HiDALGO project
belongs to his basic organization (e.g. PSNC, SZE, etc.) and additionally to the HiDALGO
organization. As a result, each private dataset assigned to the HiDALGO organization is visible
to all users of the HiDALGO project.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 43 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 20: Dataset form related to the HiDALGO organization.
7.2 Available APIs
Every day, ECMWF produces ~120TiB of raw weather data, represented as a six-dimensional
collections. The raw data is also stored in the world's largest meteorological archive (MARS),
currently holding over 300 PiB of primary data - which is also served around the world on
demand.
As explained before, ECMWF has developed the Polytope, an open-source service which
allows users to request arbitrary n-dimensional stencils ("polytopes") of data from highly-
structured n-dimensional datasets. The data extraction is performed server-side (collocated
with the data), allowing for large data reduction prior to transmission and less complexity for
the user.
The polytope API is located at http://polytope.ecmwf.int/openapi/ and allows you to:

 Authorize
 Get collections
 Download data
 Get specific request or list of requests on collection

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 44 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

 Delete request
 Test if the server is alive
 Get user information

Figure 21: Dataset form related to the HiDALGO organization.
Additionally, a web interface has been created, in order to facilitate the way to access to the
features of Polytope. The next section shows such GUI and how it should be used.
7.3 Usage and Examples

7.3.1 Polytope
To get started with the online client, you must have a valid API key from ECMWF. In the web
interface you should log in with your email and API key.

Figure 22: The polytope web API interface – log in form.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 45 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

In the “new request” form user should provide several parameters related with ECMWF API.
There is a dedicated collection named “hidalgo-mars” to the HiDALGO users.

Figure 23: The polytope web API interface – new polytope request.

Figure 24: The polytope web API interface – request list.
From the “my requests” list user have ability to:

 Download the output data from the polytope servers
 Browse request details
 Delete request

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 46 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 25: The polytope web API interface – request details.
As for the Polytope downloader, an example (and its results) would be the following:polytope-downloader.py --auth "email:key" --req "reqid"--path “download/file.grib”>Directory download already exists>Found request: reqid; Status: processing>Found request: reqid; Status: processed>Data saved to download/file.grib
Finally, in the case of the REST API, it is also possible to run HTTP calls to the API. As an
example, this is a request to execute the method to get collections:curl -X GET"http://polytope.ecmwf.int/api/v1/collections" -H"accept: application/json" -H "Authorization:email:apiKey"Response status: 200Response body:{ "message": ["debug","dummy","ecmwf-mars","fdb-test","hidalgo-mars","lexis-mars","mars-test","webmars-test"]}

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 47 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

7.3.2 Choropleth Map
Go to the data file's manage resource page and create a new Choropleth Map view. You'll see
a form with a few fields. Enter a title, leave the description empty (if you want). Now we need
to add the GeoJSON. Select in the GeoJSON Resource field the resource you created.

Figure 26: Choropleth Map form view.

Figure 27: Example of choropleth map – Internet users per 100 people.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 48 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

8 Visualization
8.1 Implemented Solution
In HiDALGO two visualization tools with different functionalities are provided and are
accessible within the HiDALGO portal. In order to visualise data interactively in a dashboard
the visualization tool Visualizer, developed by Know-Center, is used. Three-dimensional
simulation data is visualized in the HLRS software COVISE. Both tools keep under development
under WP3 and they are described separately in the following sections.

8.1.1 Visualizer
Visualizer is a web-based visualization tool enabling users to investigate large tabular data
sets. It allows users to easily configure new dashboards with a few clicks. Dashboards can be
shared with other users or deployed to any website using I-Frames. Using Visualizer, users
have full control over data security and privacy, since all interaction remain on the client,
nothing is shared with the server unless dashboard sharing and collaborative data analysis is
enabled. The dashboard supports users in selecting suitable visualizations depending on the
selected data fields using a rule-based recommender.
Initially, users need to select the data set they want to investigate. This is either done by
selecting local files, defining an URL to a remote data set or by pushing interesting data sets
to the dashboard if it is integrated within another website.
After selecting one or multiple data sets, users can perform simple data cleaning and
transformation operations. In addition, the dashboard supports automatic data type
detection.
As mentioned above, the integration with the Portal is done by including the Visualizer GUI in
an I-Frame of the frontend, which enables a link to the tool in a menu at the left side.
More details about the tool implementation can be found in the WP3 deliverables, since this
tool is developed in the context of such WP.

8.1.1 COVISE
COVISE stands for COllaborative VIsualization and Simulation Environment. It is an extendible
distributed software environment to integrate simulations, post-processing and visualization
functionalities in a seamless manner. COVISE Rendering modules support virtual
environments ranging from workbenches over powerwalls, curved screens up to full domes
or CAVEs. The users can thus analyse their datasets intuitively in a fully immersive
environment through state-of-the-art visualization techniques including Volume rendering

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 49 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

and fast sphere rendering. COVISE is an open source software. The source code (we use
version v2021.1) is available on GitHub (https://github.com/hlrs-vis/covise) or as build for all
supported Operating Systems (on https://fs.hlrs.de/projects/covise/support/download/).
More details about the tool implementation can be found in the WP3 deliverables, since this
tool is developed in the context of such WP.
8.2 Available APIs

8.2.1 Visualizer
Visualizer is exposed through a web GUI. The actual dashboard has three main areas, the data
selection area, the visualization selection area and the actual dashboard showing multiple
coordinated views.
Each visualization is configured within its own I-Frame enabling users to create their own
visualizations and using their libraries independently from all other visualizations.
Brushing within one visualization updates all other visualizations depending on the
configuration for incoming events. Visualizations can either filter or highlight the selected
data or remain unchanged depending on the configuration.
We can see a sample dashboard with four different visualizations in Figure 28. On the left side
data is divided in to categorical and numerical fields. Depending on which data fields are
selected, different visualizations are enabled within the VisPicker on the right side.

Figure 28: Visualizer showing multiple coordinated visualizations

https://fs.hlrs.de/projects/covise/support/download/

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 50 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

While configuring a dashboard, the URL is constantly updating containing all dashboard
information.
Opening this URL in the browser opens the corresponding dashboard within the browser. If a
local data set is used, it needs to be selected beforehand. Therefore, this can be used by the
frontend in order to directly list the graphs that could be visualized as an outcome of concrete
simulations. Using this URL, dashboards can be easily deployed within any other website.
The following example shows howVisualizer can be integrated to anywebsite using I-Frames:
<html>
<head>
<style>
iframe {
width: 800px;
height: 800px;
border: 1px solid black;

}
</style>

</head>
<body>
<iframe src="URL" frameborder="0" id="visualizer" name="visualizer"></iframe>
<script>
var data = "";
window.addEventListener("message", function (event) {
if (event.data === "visualizer-ready") {
show();

}
});
function show() {
window.frames.visualizer.postMessage(data, "*");

}
</script>

</body>
</html>

Here the URL can be set either directly in the I-Frame
<iframe src="http://vismobile.know-center.tugraz.at/#..." frameborder="0" id="visualizer" name="visualizer"></iframe>
or by selecting the I-Frame and changing the source
document.getElementById("visualizer").src ="http://vismobile.know-center.tugraz.at/#...";

The data itself is pushed to the I-Frame using
window.frames.visualizer.postMessage(data, "*");

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 51 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

8.2.1 COVISE
The main way to expose COVISE is through a desktop application that acts as client to load
and visualize the data locally. We show the so calledMapEditor in Figure 29, which is the main
part of the user interface. In COVISE an application is divided into several processing steps,
which are represented by COVISE modules. This usage is recommended for developers to
visualize simulation outputs on a personal computer or with a virtual environment system.

Figure 29: COVISE GUI
In order to provide a simple and user-friendly application of COVISE an extension is being
developed. The data processing is executed in a virtual machine and generates a single html
file as output, which can be opened easily in a browser or integrated in a website. This
workflow allows the user to enjoy an interactive, three-dimensional visualization without
installing additional software. The execution of COVISE is done automatically and needs no
adjustments.
This is the way in which COVISE will be integrated in the Portal, since it is possible to generate
the corresponding HTML for visualization, after simulations have been executed.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 52 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

8.3 Usage and Examples
8.3.1 Visualizer

Visualizer has been introduced and benchmarked in Deliverable 3.2. This subsection providesan overview on how to use the tool.
Figure 30 shows the data selection view of Visualizer enabling users to either select local filesor specify the URL to a remote data set.

Figure 30: Data selection in Visualizer
After selecting a data set, the table view enables users to investigate their data. Visualizerperforms automatic data type detection; however, users can change them on demand asshown in Figure 31. In addition, simple data cleaning and transformation operations can beperformed in the table view.

Figure 31: Visualizer table view
After confirming the selected data sets, users can proceed to the actual dashboard view andcreate a dashboard depending on their demands. A sample dashboard is shown in Figure 28.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 53 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

After creating the dashboard, users can perform interactions within the dashboard.Interactions within one of the visualizations highlight the corresponding fields in all othervisualizations, as shown in Figure 32.

Figure 32: Coordinated multiple views in Visualizer
8.3.1 COVISE

This section covers the usage of the web interface, generated by COVISE for enabling remotevisualization. The user interface in the web application is kept simple. The menu allows toswitch view modes and to scroll through data for several time steps, as shown in Figure 33.This demonstration is used to show the simulation output of the use case Urban Air Pollution.In this example the city centre of Stuttgart is visualized. The different components likebuildings, streets or park areas can be hidden by toggling buttons in the menu.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 54 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 33: COVISE web application
In the simulation, the airflow and spread of oxides of nitrogen (NOx) in urban areas are
observed. These results are visualized in the web application. The concentration of NOx is
illustrated by a so-called cutting surface pointing out areas with high rates of NOx, see Figure
34.

Figure 34: COVISE web application showing nitrogen oxide concentration in urban areas

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 55 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

The airflow is visualized by wind-lines along the propagation direction, see Figure 35.

Figure 35: COVISE web application showing airflow in urban areas

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 56 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

8 HiDALGO Wiki weblink - https://hidalgo-wiki.hlrs.de/.

9 Support Tools

9.1 Implemented Solution
9.1.1 WiKi

Support tools are detailed in Deliverable D5.4[5] with Zammad and Askbot. Zammad is the
support ticketing tool, which is used by customers for raising customer requests by email or
Zammad web GUI. Askbot is a community forum, which is used by the community to discuss
problems and solutions in a common platform. Zammad and Askbot are available for public
access, so we started provisioning customer supports to address the customer queries as
defined in D5.4[5]. In this deliverable, Wiki.js[21] is introduced to HiDALGO users for sharing
the documentation of HiDALGO toolbox and other non-confidential information in a
collaborative editing platform.

Figure 36: Wiki.js Software Stack.
Wiki is an internal supporting tool used in HiDALGO to share information within the
consortium. It is further planned to integrate theWiki with the portal to make produced, non-
confidential information also available to HiDALGO community. Wiki is the tool developed for
supporting collaborative editing, so it would be considered as an identical tool for building a
sustainable HiDALGO community by allowing the users to exchange their information in a
common platform.
Wiki.js[21] is a well-established open source Wiki solution, and thus it was selected among
other competitors due to its simplicity, markdown support and Keycloak OpenID
authentication. Specifically,Wiki.js is the only collaborative editing tool that supports Keycloak
OpenID for authentication, to the best of our knowledge. As a consequence, it will be
straightforward to integrate it with the HiDALGO portal. Wiki.js and Wiki are the terms used
interchangeably, and both refer to the installation of HiDALGO Wiki8.

https://hidalgo-wiki.hlrs.de/

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 57 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Wiki.js, specifically version 2.2.51, and its installation architecture details are depicted in
Figure 36. The editing tool is installed, for now, manually in the production VM to allow
internal access within the consortium. Wiki.js supports local authentication, so the user
credentials are stored safely inside a PostgreSQL database. Further, Wiki.js manages the
authorization by managing groups and page rules to restrict the functionalities and page access
at the fine-granularity level. As of now, three groups are created having different access
permissions:

 The “Admin” group is created for administrating the users, wiki pages and changing
configurations.

 The “Write” group is allowed to create and edit both public and internal wiki pages.
 The “Guest” group is allowed to create and edit only public wiki pages.

Page rules provide permission at the page level, meaning that this feature allows to restrict
the permission at a fine-granular level. Currently, Wiki is setup with the global page-rules for
allowing access only to the consortium members assigned to the “Write” group. Wiki.js
supports page creation by markdown scripts, which is very common for the documentation
and simple to learn by few commands. Wiki.js installation would be automated with Ansible
scripts for supporting CI/CD operations in the portal development (cf. Section 3). Moreover,
Wiki.js authentication and authorization will be configured to support Keycloak SSO for
potential integration with the portal (cf. Section 4). Wiki.js is configured to support self sign-
in, but the features of automatic user verification and password reset are not functioning
properly in the current version. The improperly functioning features are planned to fix in the
upcoming Wiki.js version, so the Wiki.js installation will be updated accordingly to fix those
bugs. Public wiki pages will be created to share the documentations of HiDALGO toolbox and
common information to ensure public accessibility.

9.1.1 Askbot
In a span of last couple of months several improvements have been implemented into Askbot.
Among these are the introduction of email notifications and backup solution. Askbot can now
notify users about events like new replies, votes, answers or private messages via emails
(instantly or periodically). Notification filters and frequency can be set individually for each
user.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 58 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

By default, instant notifications are triggered by answering questions posted or subscribed by
user. Periodic emails contain aggregated notifications for the events that happened during
that period.

Figure 37 Example of notification email
Another aspect in which there was some progress is related to the backup procedure. Since
Askbot and its database is run in Docker container, external volumes of data were specified.
Those volumes contain application database and setting and are accessible from the host OS,
outside of the container.
This solution allows copying internal application data to an external location (network file
system) and then restore it in case of failure or rollback.
Data restoration is performed as a final part of Ansible script. This ensures that every new
installation can immediately provide a recent snapshot of Askbot knowledge base.
Backing up the data is triggered periodically by Jenkins task.
9.2 Available APIs and Usage

9.2.1 WiKi
Wiki.js is a standalone application with its own GUI, so it is installed as an individual component
with the separate domain name (https://hidalgo-wiki.hlrs.de/). Wiki.js provides graphical GUI
for registering and log-in in the home page as shown in Figure 39. Users are currently activated
manually by admin, due to the problem with automatic user verification by email.

9.2.2 Askbot
Askbot main interfaces and features have been widely explained in the deliverable D5.4[5]
and, therefore, they are not replicated here. Since there is a new feature available for enabling
email notifications, this section aims at showing how to activate it.

https://hidalgo-wiki.hlrs.de/

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 59 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 38 Example email notification settings
Users just need to enter in their profile and select the ‘email alerts’ tab, where they will be
shown the kind of notifications they can receive and how they can be configured (in terms of
periodicity). Once the user does the selection, clicking in ‘Update’ will save the selection and
notifications will be activated. All of them can be disabled by clicking in ‘Stop Email’.
9.3 Usage and Examples
Askbot and Zammad are tools that were already described in detail in the deliverable D5.4[5].
Therefore, this section is focused on the usage of the Wiki solution. First of all, users have to
sign-in, as shown in the figure below.

Figure 39: Wiki sign-in and user registration page.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 60 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

9 HiDALGO Wiki weblink - http://hidalgo-wiki.hlrs.de/

The Admin users can manage the users, groups and page rules as shown in Figure 409. The Write
users have complete control to create, edit and delete all the wiki pages in the system, which is
shown in Figure 41 and Figure 42.

Figure 40: Admin UI for managing Users, Groups and Page rules.

Figure 41: User can edit an existing page.

http://hidalgo-wiki.hlrs.de/

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 61 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 42: Users can create a new page with different editors. Markdown is used as the default editor.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 62 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

10 http://jupyter.org/
11 https://jupyter.org/hub

10Interactive Notebooks

10.1 Implemented Solution
As described in D5.2[1], the HiDALGO portal will allow users to write and execute code for
testing, prototyping and visualizing their data. To provide these capabilities, HiDALGO has
selected to integrate Jupyter Notebooks to its portal.
The Jupyter Notebook is an open source web application maintained by Project Jupyter10 that
allows users to create and share documents that contain live code, equations, visualizations
and text. These notebook documents are both human-readable documents containing the
analysis descriptions and results (figures, tables, etc.) as well as executable documents which
can be run to perform data analysis. More specifically:

 Jupyter supports over 40 programming languages, including Python, R, Julia and Scala.
 Users can develop code that produce rich, interactive output, such as HTML, images,

video, LATEX and custom MIME types.
 Jupyter can be used for data cleaning and transformation, numerical simulation,

statistical modelling, data visualization, machine learning, etc. It can leverage Big Data
tools, such as Apache Spark, and explore the data with tools such as pandas,
TensorFlow and scikit-learn.

ICCS performed a thorough analysis of the different available options for integrating Jupyter
Notebooks to the HiDALGO portal. The analysis concluded that in order for the service to be
able to scale to high number of users, the best solution was the installation of JupyterHub11,
a multi-user version of the notebook designed for companies, classrooms and research labs.
Its most prominent features that led to its adoption by the project are the following:

 Customizability: JupyterHub can be used to serve a variety of environments, as it
supports numerous kernels, including Jupyter Notebook, Jupyter Lab, RStudio and
others. Therefore, if at a later point HiDALGO chooses to offer as a service an
alternative to Jupyter Notebook, it will be provided by JupyterHub as well.

 Flexibility: JupyterHub can be configured with authentication and supports a number
of authentication protocols, including OAuth, which is supported by the Single Sign On
service of the HiDALGO portal.

 Scalability: JupyterHub can scale to tens of thousands of users leveraging modern-day
container technology.

https://jupyter.org/hub

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 63 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

12 https://github.com/kubernetes-sigs/kubespray

 Portability: JupyterHub is open source and can be run on a variety of infrastructures.
To provide the desired scalability and allow numerous users of the HiDALGO portal, it was
decided to install JupyterHub on top of a Kubernetes cluster. The cluster currently comprises
three VMs, the specifications of which are provided in Table 7, but can be easily extended if
needed. Node_1 acts both as the kubernetes master, where all the core services run, and as
a kubernetes worker node that can spawn application containers; Node_2 and Node_3 act
only as worker nodes.

Node_1 Master Node_2 Node_3
Number of CPUs 4 2 2
CPU Frequency 2.6 GHz 2.6 GHz 2.6 GHz
RAM 12 GB 8 GB 8 GB
OS Ubuntu 18.04 Ubuntu 18.04 Ubuntu 18.04
Linux kernel 4.15.0 4.15.0 4.15.0Table 7 Specifications of the three VMs that host our jupyterhub installation

The kubernetes setup process was facilitated by leveraging the ansible scripts provided by
kubespray12, an open source project that offers scripts to create kubernetes clusters as well
as to modify them by adding or removing master and/or worker nodes. Then, JupyterHub was
installed over the kubernetes cluster using helm, the kubernetes package manager.
As a result, each user executes its own instance of Jupyter Notebook, inside a pod, which is
kubernetes’ group of docker containers. The data of each user is stored in a hostpath, a type
of volume supported by kubernetes that mounts a directory from the host node’s filesystem
into the pod. To enable notebooks to access the same user’s data independently of the node
where the user happened to log on, the hostpath was setup as an NFS shared mount point
common for all the nodes of our cluster.
Component Version Repository License
Docker 19.03.9 https://github.com/docker/docker-ce Apache License2.0
KubernetesClient 1.18.2 https://github.com/kubernetes/kubernetes.git Apache License2.0
KubernetesServer 1.18.2 https://github.com/kubernetes/kubernetes.git Apache License2.0
HelmClient 2.17.0 https://github.com/helm/helm Apache License2.0
HelmServer 2.17.0 https://github.com/helm/helm Apache License2.0

https://github.com/kubernetes-sigs/kubespray

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 64 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Component Version Repository License
Jupyterhub 0.9.0 https://github.com/jupyterhub/jupyterhub BSD LicenseTable 8 Details of all the components that make up the jupyterhub installation
10.2 Available APIs
HiDALGO’s JupyterHub portal can be currently accessed via https://notebook.hidalgo-
project.eu/hub/login. As shown in the following picture (Figure 43), once the user logs in, she
is presented with a list of previously saved notebooks and she is able to create a new
notebook, upload a notebook stored in her local machine or upload any necessary data.

Figure 43 HiDALGO's JupyterHub GUI

Figure 44 GUI for viewing, modifying and executing a notebook

https://notebook.hidalgo-project.eu/hub/login
https://notebook.hidalgo-project.eu/hub/login

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 65 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

13 https://github.com/ckan/ckanapi
14 https://docs.ckan.org/en/latest/api/index.html#action-api-reference

When the user selects a notebook to open, a new tab opens in her browser showing the
contents of the notebook. As shown in the figure that follows (Figure 44), the user has then
option to modify, execute, interrupt, etc. the kernel.
JupyterHub has been integrated with the HiDALGO CKAN repository to allow the portal users
to access and manipulate their data stored in the repository. To enable this we leverage
ckanapi13, a python module that can be used in a Python 2 or Python 3 application in order to
utilise the CKAN Action API14.
10.3 Usage and Examples
The next figure (Figure 45) provides an example that shows how a user can access data stored
in her folder in the HiDALGO CKAN repository.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 66 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

15 https://cds.climate.copernicus.eu/
16 https://confluence.ecmwf.int/display/UDOC/MARS+user+documentation
17 https://cds.climate.copernicus.eu/api-how-to
18 http://xarray.pydata.org/en/stable/
19 https://github.com/ecmwf/cfgrib

Figure 45 Example of accessing HiDALGO CKAN repository through HiDALGO's JupyterHub
Finally, the next figure (Figure 46) presents an example notebook for retrieving and workingwith weather and climate data stored in the Climate Data Store15 and ECMWFMARS Archive16.After installing the libraries for retrieving (Climate Data Store API (CDS API)17 and Weatherand Climate Data API (WCDA)) and processing the data (xarray18 and cfgrib19) using conda, theuser can manipulate the data to prepare them for the use in the applications.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 67 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 46 Using JupyterHub to retrieve and process weather and climate data

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 68 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

11Frontend and Applications GUI

11.1 Implemented Solution
The Frontend part has suffered several modifications. First of all, it has improved the way in
which applications can be installed and executed. On the other hand, we have enabled the
integration of the different components of the Portal in a one-stop-shop, where users can
access all the features easily.

11.1.1 Integration of the Portal Components
In the first version of the Portal, we had several services available, but they were deployed in
a quite isolated way, so it required to any user to know the concrete URLs to access them,
with no connection between them.
In this version, the effort has been focused on the integration of these separated components,
so now it is possible to access only the frontend and get access to the rest of the available
elements, such as the training (Moodle), Q&A (Askbot), etc.

Figure 47 HiDALGO Portal with the Training tool
There are two different ways in which such integration has been done:

 Usage of iFrames
 Open new tabs

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 69 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Due to the complexity of the applications to be integrated, using Javascript was not the
solution in order to integrate the GUIs of the other components. The Frontend is implemented
in Angular and, therefore, the way to do it was to include each component as a ‘module’ in
Angular. The list of components supported in v2 is:

 Training (Moodle)
 Q&A (Askbot)
 Ticketing System (Zammad)
 Orchestration (Croupier)
 Data Catalogue (CKAN)
 Visualizer

Only in the case of Croupier and Zammad, since their GUIs do not allow iFrames (due to the
X-Frame option embedded in their code), the solution was to include some page with
information about the tool and a button to open the tool in a new tab.
The Frontend includes a button in the top left that shows amenu, giving access to the features,
organized according to the type of functionality they provide (Applications, Community and
Support, Data Management and Visualization).
Although this is a valid solution for integrating the tools, sometimes the look and feel is not
the best one. Therefore, the next version will re-model the frontend, in such a way that the
access will keep simple while the Frontend improves the aspect of the whole Portal.
Additionally, the support to the Jupyter Notebooks is ongoing, and more tools will be added,
such as the Polytope interface (as one of the data management tools) and the web version of
COVISE (as one of the visualization tools).

11.1.2 Execution of Workflows
In order to ease the way in which users can execute their simulations, the Frontend includes
a more elaborated interface for managing the applications and their execution. The figure
below shows how different parts of the Portal interact in order to make this to happen.

Figure 48 Implemented structure for execution workflows

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 70 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Currently, the Frontend provides two options, one for adding new applications and another
one to execute an existing application. In the first case, the user just needs to provide an
application name, a description and a zip file with the blueprint that represents the
application. Then, the Frontend communicates to the Backend about the new application and
the Backend performs two actions: i) it stores the provided information in the local database
and ii) invokes the Croupier REST API in order to install the new application.
As for the execution activity, the Frontend retrieves the information from the blueprint,
identifying the input parameters required, creating a form with the list of parameters. Then,
a user will be able to fill in these parameters and ‘Run’ the application.
The Backend receives the list of parameters, generates a YAML file with the inputs and sends
this input file to the Orchestrator, as a first step to create an instance of the application
(through the REST API). Then, invokes again the REST API, but this time for executing the
instance it just created. As soon as some information is generated by the Orchestrator, the
Backend provides this information to the Frontend, that will show it.
It is important to mention that all these operations are supervised by Keycloak, since both the
Frontend and Backend check the security tokens against Keycloak.
While the Frontend is a web application implemented in Angular, the Backend is a Django
application implemented in Python3, including multiple libraries, like cloudify-common,
djangorestframework, mozilla-django-oidc, pyOpenSSL and PyYAML. An additional work has
been done in order to deploy the Backend using uWSGI as web server and to dockerize the
whole solution, although, since it has shown to be more complex than expected, we may
decide to change to Gunicorn in the next release.

11.1.3 User Matchmaking
Matchmaking functionality and API are not changed from D5.3[2]. Matchmaking is
implemented by using python2.7 and it is no longer supported, so it is planned to port to
python3.6. Matchmaking algorithm is currently based on the Geometric Mean algorithm to
calculate the user’s relation, and it is planned to enhance with the machine learning
algorithms (clustering) to group users based on the users’ profile and preference information.

11.1.4 Usability, Users’ Feedback and Monitoring
11.1.4.1 Testing Usability
There are some tools and services that can support developers for understanding how the
users make use of the web applications deployed, generating heat maps (indicating the main
areas where users move the mouse and click), generating useful questionnaires, measuring
certain aspects related to performance (i.e. loading times), etc. Since these tools and services

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 71 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

20 https://qualaroo.com/
21 https://www.crazyegg.com/
22 https://www.optimalworkshop.com/chalkmark/
23 https://www.webpagetest.org/
24 https://developers.google.com/web/tools/lighthouse
25 https://mouseflow.com/
26 https://www.tawdis.net

may provide valuable information to the consortium, we have analysed those that are
available, in order to understand how they can be applied in the context of the project. The
main issue detected, in general, is that the vast majority of tools and services are not for free
(requiring some monthly fee), although most of them provide limited periods of free trials
(usually, between 14 and 30 days).
Some of the widely used tools are Qualaroo20, Crazyegg21 and Chalkmark22, which are not for
free. While the first one is quite focused on collecting feedback from users (i.e. showing up
some simple questions when users do certain actions), the other two keep track of the users’
activity and where they click. Qualaroo can collect feedback with small text boxes (i.e. to
collect a quick answer when a user cancels an action like a purchase) and other elements like
simple satisfaction questions to select how many stars to give. Then that information is used
together with IBMWatson to perform sentiment analysis depending on the answers received.
On the other hand, Crazyegg and Chalkmark are similar tools that monitor users’ activities,
generating snapshots, heatmaps, click density grids and recordings of individual sessions that
can be analysed in order to see if users are following the expected path to complete certain
tasks or if they are getting stuck in some part of the interface. This information can be used to
adapt the interfaces, making easier for users to complete the expected tasks.
There are also other tools that can be used for free (at least, for a good set of basic features).
From the analytical perspective, WebPageTest23 allows to carry out some tests to the website,
focused on its loading time and performance, so it is possible to figure out how to improve it
(i.e. we can simulate the access to the website from different locations). Google Lighthouse24
has some similarities, carrying out audits about the website performance and even providing
information about SEO-related aspects. Additionally, mouseflow25 is a tool like Crazyegg and
Chalkmark, that generates heatmaps and scrolling statistics, so we can analyse users’
behaviour (it is for free for one site, 500 recordings per month).
Another interesting tool is TAW26, that analyses the accessibility of a website. It takes into
account WCAG 2.0[22] in order to report to what extent people with different capabilities can
access to the website content as expected. It is able to detect some problems automatically
and it points out some other issues to be checked manually by the developer.
In the case of HiDALGO, we see interesting to use, at least, one tool for analysing the
performance and another tool for generating heatmaps, since they are complementary.

https://qualaroo.com/
https://www.crazyegg.com/
https://www.optimalworkshop.com/chalkmark/
https://www.webpagetest.org/
https://developers.google.com/web/tools/lighthouse
https://mouseflow.com/
https://www.tawdis.net

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 72 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

11.1.4.2 Collecting Users’ Feedback and Monitoring their Actions
Since the consortium received some comments about having a more user-centric Portal, that
will also retrieve information about its usage and will collect users’ feedback. After analysing
several options, we decided to implement a system that will monitor the users’ actions
anonymously and that will also allow users to provide some simple feedback about their
satisfaction.
Solutions like Google Analytics can be integrated, but they require the users to accept certain
cookies that they might not want to accept and, since it requires some effort to integrate
anyway, we decided to include some code in the frontend that will interact with the Backend
in order to store usage information in the database. Each time a user starts a session, a hash
code will be generated for the session, keeping track of the main actions done (clicks done by
the user and paths followed to reach some functionality). We will include the possibility to
disable this option for operational environments, since we may expect a small drop in
performance.
Thanks to such information, it will be possible to retrieve data and group it, in such a way it
will be possible for us to understand the actions that users carry out most of the times, how
they execute certain actions and if there are features that are not used in general. This
information will be used to analyse the usability (we can see if they are efficient doing certain
actions and how much time it takes to them), to reorganize the Portal (it might be necessary
to give more visibility to certain features) and even to re-factor some code if it may require
higher scalability (because it is widely used).
Finally, as mentioned before, we have planned to include a simple questionnaire, so they can
provide some feedback. We will ask them to indicate the services/features that they use to
make use of, as well as their level of satisfaction with each feature and with the Portal in
general.
11.2 Available APIs
We can consider that the backend has two interfaces. First of all, the backend managing the
interaction with other components and keeping the database information provides a REST
API that is accessed by the frontend, in order to perform the complex operations. Such API
has been created with the Django-Rest-Framework (DRF) and, although there are several
modifications in the code that implements the services, we have maintained the same API we
defined in D5.3[2], with the exception of minor additions. Therefore, section 5.2 of D5.3[2]
contains the description of the API served in this version. It is important to bear in mind that
now the REST API is fully integrated with Keycloak and it can be only invoked using a security
token. The new API only contains two methods related to the reset of the backend.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 73 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

REST API endpoints API Descriptionapps/reset Used to reset the applications stored in the
database (GET method).

instances/reset Used to remove the instances created for all the
applications used from the Frontend (GET
method).

Table 9 New Methods of the Backend REST API
On the other hand, there have been modifications in terms of the web-based GUI. Although
we still maintain the Cloudify Web Console (as shown in D5.3[2]), there is a new version of the
frontend that allows for a different way to manage the applications. Moreover, it puts
together the rest of components under the same interface, as a way to provide a one-stop-
shop.
The GUI consist of a top part with the HiDALGO logo and information from the connected
user. Then, there is a button at the top left that shows the menu with all the options that can
be selected. Once the user clicks, the corresponding component is loaded.
In those cases in which it is not possible to embed the component interface, a new tab is
created. The next subsection shows how to use some of the new features of the frontend.
11.3 Usage and Examples

11.3.1 Using the Backend API
Since the main methods of the REST API have not changed, it is possible to invoke them as
before. In order to be compliant with the security requirements, it is necessary to get the
security token from the Keycloak first:RESULT=`curl -k --data"grant_type=password&client_id=curl&client_secret=xxbackendkeyxx&username=xxusernamexx&password=xxuserpasswordxx" https://prunus-212.man.poznan.pl/auth/realms/Hidalgo/protocol/openid-connect/token`TOKEN=`echo $RESULT | sed's/.*access_token":"\([^"]*\).*/\1/'`
Then, it is possible to send requests in order to list the applications and instances available in
Croupier:

https://prunus-212.man.poznan.pl/auth/realms/Hidalgo/protocol/openid-connect/token%60
https://prunus-212.man.poznan.pl/auth/realms/Hidalgo/protocol/openid-connect/token%60
https://prunus-212.man.poznan.pl/auth/realms/Hidalgo/protocol/openid-connect/token%60

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 74 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

curl -H "Authorization: Bearer $TOKEN"http://x.x.x.x:9000/apps/curl -H "Authorization: Bearer $TOKEN"http://x.x.x.x:9000/instances/
It is also possible to add new applications and even to create new instances of an existing
application, like in the following example:curl --data-urlencode app=FACS-blueprint --data-urlencode name=xxappnamexx --data-urlencodeinputs_file@my-blueprint-inputs.yaml -H "Authorization:Bearer $TOKEN" -X POST http://x.x.x.x:9000/instances/

11.3.2 The Frontend Web GUI
The frontend has now several features available just doing a few clicks. In the case of the
applications management, it is possible to access to the features of adding a new application
and executing an existing one by using the menu and selecting the options under
‘Applications’. In the case of adding a new application, for instance, we will be requested to
provide the name of the application and a description. Then, we will see the option to upload
the zip file with the blueprint.

Figure 49 Adding an application from the Frontend
Other options, like the direct access to the Croupier GUI are done under ‘Applications’,
selecting ‘Orchestrator’, but in such case, we are requested to click a button to open the
dashboard in a separated tab.

http://x.x.x.x:9000/apps/
http://x.x.x.x:9000/instances/

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 75 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Figure 50 Accessing the Orchestrator GUI from the Frontend
In the case of the rest of features, most of them are embedded as iFrames, so it is necessary
only to click on the corresponding option and it will be shown in the main part of the screen.
Since it is not easy to do a perfect integration, clicking on the top left button (next to the
‘Global Challenges Portal’ name), it is possible to hide the menu, so applications are shown in
full screen (like the next figure shows with CKAN).

Figure 51 Access to CKAN from the Frontend hiding the menu

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 76 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

12Available Infrastructures

12.1 Integration Infrastructure
For development and testing purposes of the services in HiDALGO project the Integration
Infrastructure has been set up. The machines are set up and managed via Openstack
environment.
Several services running on Integration Infrastructure have been described in D5.3[2]. Since
then several new machines have been set up, as seen in Table below. It must be taken into
account that the domain name is not the full URL to access the services.

Service CPUCores RAM VM Public IP Domain Name
Streaming 4 8GB 62.3.171.145 sophora-145.man.poznan.pl
Visualization 4 8GB 62.3.170.209 prunus-212.man.poznan.pl
Support ticket 4 8GB 62.3.171.210 sophora-210.man.poznan.pl
Askbot 4 8GB 62.3.171.76 sophora-76.man.poznan.pl
Cloudify 4 8GB 62.3.171.103 hidalgo-cfy.hlrs.de
Matchmaking 4 8GB 62.3.171.89 sophora-89.man.poznan.pl
Zabbix 4 8GB 62.3.171.109 sophora-109.man.poznan.pl
Moodle 4 8GB 62.3.171.102 sophora-102.man.poznan.pl
Jenkins 4 8GB 62.3.171.42 sophora-42.man.poznan.pl
FrontEnd 4 8GB 62.3.171.105 sophora-105.man.poznan.pl
IDM 4 8GB 62.3.170.212 prunus-212.man.poznan.pl
Wiki 2 4GB 62.3.171.187 sophora-187.man.poznan.pl
Coegss-spark 32 32GB 150.254.165.237 ribes-237.man.poznan.pl
Notebook 6 12G 62.3.171.147 sophora-147.man.poznan.plTable 10 List of VMs in the Integration Infrastructure
12.2 Deployment Infrastructure
The deployment infrastructure is available in the sameway as the integration one. In this case,
the VMs are hosted at HLRS, also following a Cloud solution. In this case, the available VMs
are listed in the following table.

Service VM Public IP Domain Name

https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://sophora-210.man.poznan.pl
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://hidalgo-cfy.hlrs.de/
http://sophora-89.man.poznan.pl/match-api/v0/questions
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://sophora-102.man.poznan.pl
https://sophora-42.man.poznan.pl/
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://sophora-187.man.poznan.pl
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1
https://hidalgo-wiki.hlrs.de/workpackages/wp5/tasks/task_5_1

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 77 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Moodle 141.58.0.224 https://moodle.hidalgo-project.eu/
Cloudify 141.58.0.227 https://cloudify.hidalgo-project.eu/
Zammad 141.58.0.231 https://support.hidalgo-project.eu/
Matchmaking No public IP
Jenkins 141.58.0.225 https://hidalgo-jenkins.hlrs.de/
Wiki 141.58.0.223 https://wiki.hidalgo-project.eu/
CKAN 141.58.0.226 https://ckan.hidalgo-project.eu
Askbot 141.58.0.228 https://askbot.hidalgo-project.eu
Zabbix Monitoring 141.58.0.222 hidalgo-monitor.hlrs.de
Keycloak IDM 141.58.0.229 https://hidalgo-idm.hlrs.de/auth/
Portal Frontend &Backend 141.58.0.230 portal.hidalgo-project.eu
Notebook 141.58.0.232 notebook.hidalgo-project.eu
Notebook computenode-1 No public IP
Notebook computenode-2 No public IP
Visualizer 141.58.0.233 https://visualization.hidalgo-project.eu/
COVISE 141.58.0.233 https://visualization.hidalgo-project.eu/Table 11 List of VMs in the Deployment Infrastructure

12.3 Training Infrastructure
Training infrastructure is a set of nodes on Eagle that aim to bring real-time HPC on a smaller
scale for testing and demonstration purposes.

Figure 52 Architecture of Training Infrastructure nodes

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 78 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

It consists of 4 training nodes, where computation takes place and less powerful head node
for commissioning work. All the nodes are connected to a network storage. They are equipped
with SLURM workload manager and all the necessary libraries for pilot development. For
security purposes the network is isolated apart from head node, and private addresses are
used.
It can be accessed via SSH protocol, but it is also integrated with Cloudify service, which allows
any user to perform work on it.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 79 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

13Conclusions
This document describes the progress done in the second release of the HiDALGO Portal,
including a description on how the feature was implemented, the APIs available and how it
can be used. The progress done with respect to the previous version is important, since we
added more features in several areas: applications execution, data management, users
support, visualization, orchestration, users management and CI/CD. We added new tools for
users support (now, besides training, we have a ticketing system and the Askbot, together
with a Wiki with documentation) and we also included the Notebooks. We have now more
tools for visualization, with more features and easily integrable with the Portal (Visualizer and
COVISE). It is also interesting to highlight the availability of a new infrastructure for training.
All the implemented features facilitate the user experience with HiDALGO and open the
opportunity to provide more and better services. The fact that the Frontend puts them
together is good in order to have a one-stop-shop, even if we have a very complex system,
made of many different technologies and languages.
Comparing the list of features to the original roadmap, we can say that most of the expected
features are available, although there is still room for improvement. For instance, the look
and feel of the Frontend needs to be improved and, therefore, several modifications are being
implemented. It is also to provide a more user-centric approach, so we have defined some
ways to collect information about the Portal usage and users’ opinions, so we will be able to
improve the Portal in the last release.

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 80 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

References
[1] HiDALGO, D5.2 – Portal Architecture and Roadmap. Carnero, Javier et al. 2019.
[2] HiDALGO, D5.3 – First HIDALGO Portal Release and System Operation Report. Nieto, F.

Javier et al. 2019.
[3] HiDALGO, D6.1 – Requirements Process and Results Definition. Maritsch, Martin et al.

2019.
[4] HiDALGO, D6.4 – Initial Report on Requirements, Components and Workflow Integration.

Tsoumakos, Dimitrios et al. 2019.
[5] HiDALGO, D5.4 – HiDALGO Support Concept. Rajagopal, Dineshkumar et al. 2020.
[6] HiDALGO, D6.2 – Workflow and Services Definition. Maritsch, Martin. 2019.
[7] Jenkins. URL: https://jenkins.io/. Last visited in December 2019.
[8] Moodle Training Service. URL: https://www.moodle.org. Last visited in December 2019.
[9] CKAN: https://ckan.org/, last visited in December 2019
[10]Apache Groovy Language, https://groovy-lang.org/
[11]Keycloak Server Administration Guide. URL:

https://www.keycloak.org/docs/latest/server_admin/, last visited in December 2020
[12] About Cloudify. URL: https://docs.cloudify.co/5.0.0/about/, last visited December 2020
[13]OASIS. Security Assertion Markup Language (SAML) 2.0 Technical Overview. 22nd July

2004. http://xml.coverpages.org/SAML-TechOverviewV20-Draft7874.pdf. Last visited in
December 2020.

[14] OpenID. OpenID Connect Core 1.0. 8th November 2014.
https://openid.net/specs/openid-connect-core-1_0.html. Last visited December 2020.

[15]CAS Protocol 3.0 Specification, Apereo and Yale University. 13th January 2015.
https://apereo.github.io/cas/5.1.x/protocol/CAS-Protocol-Specification.html. Last visited
January 2021

https://jenkins.io/
https://www.moodle.org/
https://ckan.org/
http://xml.coverpages.org/SAML-TechOverviewV20-Draft7874.pdf
https://apereo.github.io/cas/5.1.x/protocol/CAS-Protocol-Specification.html

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 81 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

[16] OASIS. TOSCA Simple Profile in YAML Version1.3. 18th September 2019.
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-
Simple-Profile-YAML-v1.3-cs01.pdf. Last visited December 2020.

[17] Topology and Orchestration Specification for Cloud Applications Version 1.0. 25
November 2013. Oasis Standard. URL: http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html, last visited December 2020

[18] Croupier GitLab Repository. URL: https://github.com/ari-apc-lab/croupier
[19]Apache Mesos REST API v1.0 -

http://mesos.apache.org/documentation/latest/endpoints/
[20]HiDALGO, D5.1 – HiDALGO System Environment. Abhishek et al. 2019.
[21]Wiki.js official documentation, https://docs.requarks.io/
[22]Web Content Accessibility Guidelines (WCAG) 2.0, W3C Recommendation 11 December

2008. URL: https://www.w3.org/TR/WCAG20/, last visited April 2021

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://github.com/ari-apc-lab/croupier
http://mesos.apache.org/documentation/latest/endpoints/
https://docs.requarks.io/
https://www.w3.org/TR/WCAG20/

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 82 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

Annex 1: Jenkins Pipeline Definition for Zammad
#!/usr/bin/groovy
pipeline {agent {label 'master'}

options {disableConcurrentBuilds()}
environment {PYTHONPATH = "${WORKSPACE}/"}
stages {stage("Integration - Install") {steps { integration() }}stage("Integration - Test") {steps { runUAT("sophora-210.man.poznan.pl", "https") }}stage("Approve for Production") {steps { approve() }}stage("Deployment - Install") {steps { deploy() }}stage("Deployment - Test") {steps { runUAT("support.hidalgo-project.eu", "https") }}}}

def integration() {sh "ansible-playbook -iJenkins/Inventory/zammad_integration.INI ./zammad-integration.yml --vault-password-file=~/HiDALGO/VaultPassword/zammad_vault.txt"}
def deploy() {sh "ansible-playbook -i Jenkins/Inventory/zammad.INI ./zammad-deployment.yml --vault-password-file=~/HiDALGO/VaultPassword/zammad_vault.txt"}
def approve() {try { timeout(time:1, unit:'DAYS') {input('Do you want to deploy to live?')}} catch(err) {def user = err.getCauses()[0].getUser()if('SYSTEM' == user.toString()) { // SYSTEM means timeout.didTimeout = true} else {

Document name: D5.6 Second HIDALGO Portal Release and System OperationReport Page: 83 of 83
Reference: D5.6 Dissemination: PU Version: 1.2 Status: Final

userInput = falseecho "Aborted by: [${user}]"}}
}
def runUAT(hostname, protocol) {sh "Tests/ping_cloudify.sh ${hostname} ${protocol}"}

