

This document is issued within the frame and for the purpose of the HiDALGO project. This project has received funding from the European
Union’s Horizon2020 Framework Programme under Grant Agreement No. 824115. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.
The dissemination of this document reflects only the author’s view and the European Commission is not responsible for any use that may
be made of the information it contains. This deliverable is subject to final acceptance by the European Commission.
This document and its content are the property of the HiDALGO Consortium. The content of all or parts of this document can be used and
distributed provided that the HiDALGO project and the document are properly referenced.
Each HiDALGO Partner may use this document in conformity with the HiDALGO Consortium Grant Agreement provisions.

(*) Dissemination level: PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement; CI:
Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

HiDALGO

D5.3 First HIDALGO Portal Release and

System Operation Report

Keywords:

HPCaaS, HIDALGO, CoE, Portal, Web, Entrypoint

Document Identification

Status Final Due Date 30/11/2019

Version 1.0 Submission Date 12/12/2019

Related WP WP5 Document Reference D5.3

Related
Deliverable(s)

D5.1, D5.2, D5.6, D5.7 Dissemination Level (*) PU

Lead Participant ATOS Lead Author F. Javier Nieto (ATOS)

Contributors KNOW, ICCS, USTUTT,

BUL, PSNC

Reviewers Gregor Bankhamer

(PLUS)

Miroslaw Kupczyk

(PSNC)

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 2 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Aleix Sanchis ATOS

Marcin Lawenda PSNC

Dineshkumar Rajagopal USTUTT

Document History

Version Date Change editors Changes

0.1 15/11/2019 F. Javier Nieto TOC, Section 1.

0.2 21/11/2019 Dineshkumar
Rajagopal

Sections 3, 6 and 8

0.3 28/11/2019 F. Javier Nieto Section 2

0.4 29/11/2019 Marcin Lawenda Section 7

0.5 02/12/2019 Aleix Sanchis Section 4

0.6 05/12/2019 Aleix Sanchis, F.
Javier Nieto

Sections 5, 9 and 10

1.0 11/122019 F. Javier Nieto Incorporate comments from internal review.
Final version.

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader F. Javier Nieto (ATOS) 12/12/2019

Quality manager Marcin Lawenda (PSNC) 12/12/2019

Project Coordinator Francisco Javier Nieto de Santos (ATOS) 12/12/2019

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 3 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ... 2

Table of Contents ... 3

List of Tables ... 5

List of Figures .. 6

List of Acronyms ... 7

Executive Summary .. 8

1 Introduction ... 9

1.1 Purpose of the document .. 9

1.2 Relation to other project work ... 9

1.3 Structure of the document ... 9

2 Implemented Features .. 10

2.1 Current Features Available ... 10

2.2 Integration and Deployment Infrastructure .. 11

2.3 Portal Roadmap Implementation ... 12

3 CI/CD Infrastructure .. 15

3.1 Implemented Solution .. 15

3.2 Software Development Pipeline (Jenkins Pipeline) ... 16

3.3 Jenkins Web Navigation & Usage ... 18

4 Single Sign On .. 21

4.1 Implemented Solution .. 21

4.2 Available APIs ... 22

4.3 How to Use and Examples .. 22

5 Workflows Orchestration .. 24

5.1 Implemented Solution .. 24

5.2 Available APIs ... 24

5.3 How to Use and Examples .. 26

6 Training .. 28

6.1 Implemented Solution .. 28

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 4 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

6.2 Available APIs ... 29

6.3 Moodle Usage .. 29

6.3.1 Manager and Course Instructor Functionalities .. 30

6.3.2 Student Functionalities .. 31

7 Data Catalogue .. 32

7.1 Implemented Solution .. 32

7.2 Available APIs ... 33

7.3 How to Use and Examples .. 35

8 Users Matchmaking ... 40

8.1 Implemented Solution .. 40

8.2 Available APIs ... 42

8.3 How to Use and Examples .. 44

9 Frontend and Applications GUI ... 47

9.1 Implemented Solution .. 47

9.2 Available APIs ... 47

9.3 How to Use and Examples .. 47

10 Conclusions .. 49

References .. 50

Annexes .. 51

Appendix 1: Jenkins Pipeline Definition .. 51

Appendix 2: Cloudify Unit Test & Code Coverage .. 52

Appendix 3: Blueprint Example... 53

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 5 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 1 List of acronyms .. 7

Table 2 Integration and Deployment VMs configuration for each service .. 12

Table 3 Original features proposed for MS4 vs current implementation .. 13

Table 4 Features not planned for MS4 but included in the current implementation .. 14

Table 5 API REST of the Orchestrator .. 25

Table 6 Usage examples for the Orchestrator REST API .. 27

Table 7 All the REST APIs and its description details. .. 44

Table 8 Answers API with detailed usage scenarios with Http GET, POST and PUT requests 45

Table 9 All the APIs supports GET, PUT and POST request except for matches API. ... 46

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 6 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1 – Jenkins web server and its interconnection with the portal integration (PSNC), deployment (HLRS)

infrastructure and different actors roles and accessibility ___ 15

Figure 2 – Graphical view of six stages Jenkins pipeline for Cloudify ___________________________________ 18

Figure 3 – List of Jenkins project in the dashboard after login __ 19

Figure 4 – ‘Build Now’ button to submit the Jenkins job, and track the Jenkins pipeline progress. ___________ 19

Figure 5 – Jenkins Pipeline will wait for manual approval after the successful installation and test in the

Integration infrastructure. __ 20

Figure 6 – Jenkins pipeline failure and its reason can be analysed with logs when hovering over the failure stage.

 ___ 20

Figure 7 – Action Flow using Keycloak as the IdAM alongside several services __________________________ 21

Figure 8 – Keycloak Administration Console __ 23

Figure 9 – Login form provided by Keycloak __ 23

Figure 10 – Cloudify Web Console main dashboard __ 26

Figure 11 – Moodle Software Stack __ 28

Figure 12 – Moodle course with multiple topics. Each topic with Course content, Question, Feedback,

Assignment, and Survey, etc. ___ 29

Figure 13 – Manager and Course instructor has the capabilities to edit the course content. _______________ 30

Figure 14 – Manage student enrolment manually by admin and Course Instructor _______________________ 30

Figure 15 – Students can self enrol by clicking "Enrol me" button. ____________________________________ 31

Figure 16 – Students can track the course progress, calendar and other notification in the dashboard _______ 31

Figure 17 – The CKAN system – datasets summary page__ 32

Figure 18 – The configuration of the enhanced CKAN environment ___________________________________ 33

Figure 19 – A new dataset creation in the CKAN system. ___ 35

Figure 20 – Dataset relationship management in the CKAN. ___ 36

Figure 21 – Defining organizations in the CKAN system. __ 37

Figure 22 – CKAN data harvestation process. ___ 38

Figure 23 – The disqus extension to the CKAN enables commenting feature. ___________________________ 39

Figure 24 – High-level architecture of matchmaking service ___ 41

Figure 25 – Form to submit new Cloudify Blueprints ___ 48

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 7 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

API Advanced Programming Interface

A&A Authentication and Authorization

CI/CD Continuous Integration / Continuous Deployment

DC Data Catalogue

DMS Data Management System

DRF Django-Rest-Framework

Dx.y Deliverable number y belonging to WP x

EC European Commission

FAQ Frequently Asked Questions

GDPR General Data Protection Regulation

GUI Graphical User Interface

IdAM Intelligent Digital Asset Management

MooCs Massive Open Online Courses

MSX Project Milestone X

MVP Minimum viable product

OIDC OpenID Connect

Q&A Questions and Answers

REST Representational State Transfer

SAML Security Assertion Markup Language

SCM Source Control Management

SPA Single-Page Applications

SSO Single Sign On

VM Virtual Machine

WP Work Package

Table 1 List of acronyms

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 8 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This document presents the implementation done for the first release of the HiDALGO Portal.

The implemented features have been focused on the execution of applications, the

community support, the data management and the code maintenance.

The document presents the features available, comparing the current implementation with

the original plans. Then, for each main feature, the document presents how the feature was

implemented, it describes the available APIs for each component (both graphical and REST

APIs) and provides information about how to use the features. In the case of REST APIs, the

document provides examples of calls to the services. In the case of GUIs, providing screenshots

and some guidance about the options.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 9 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

This report presents the current implementation of the first release of the HiDALGO Portal,

according to the list of features and design done in D5.2[1]. It includes information about the

deployment of components and the operation of the Portal during the first months of the

project. This document will be updated in future releases, according to the progress done in

development activities.

1.2 Relation to other project work

This document is directly related to D5.2[1], since it describes the features and designs to be

followed in the Portal implementation, according to the requirements defined in D6.1[2]. It is

also related to the workflows defined in D6.2[3] and WP4 in general (to be supported by the

Portal). It is the first release of the portal development in T5.3, that will be updated in D5.6

and D5.7.

1.3 Structure of the document

This document is structured in 8 major chapters:

Chapter 2. talks about the features that have been implemented in the context of the first

release of the Portal, in line with the designs done in D5.2[1].

Chapter 3. to 9. describe how the features were implemented, the supported functionality,

the components used, the APIs available and how these features can be used in the context

of HiDALGO.

Chapter 10. just provides a summary and a set of conclusions obtained after the current

implementation.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 10 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

2 Implemented Features

2.1 Current Features Available

The report D5.2[1] (in its section 2) already sketched the list of features that the project was

planning to provide through the HiDALGO Portal. It was identifying eight main features:

• Centralized user management: authentication and authorization related feature,

enabling single-sign-on and being compliant with GDPR for users’ personal data;

• User discovery: allow users to publish their profiles and to find other users with similar

interests or concrete skills;

• User community support: set of solutions for supporting HiDALGO stakeholders, like

training material, FAQ, adequate usage documentation and concrete tools for support

(ticketing system and public forum);

• Data visualization: visualization of users’ data, including some analysis algorithms

which support the detection of patterns/outliers, as well as certain search functions;

• Data management: set of tools for exploring, transferring and storing datasets in an

easy way;

• Interactive code: enable the prototyping and testing of code and data analytic tasks

through notebooks and similar web-based tools;

• Application visualization: show progress indicators and other information about the

application status (monitoring information, also about job queues);

• Application execution: abstract HPC resources, so users can configure and execute

easily their applications through the Portal;

• Portal maintenance: other features like code testing, continuous integration,

deployment support and monitoring.

From this list, according to the initial plans, feasibility criteria and potential utility of the

features, the consortium has focused on the features related to components development &

maintenance, easy execution of applications, the data catalogue and the first tools for

community support.

As a summary, we can say that the following features are currently available:

• A CI/CD infrastructure, based on Jenkins[4] and a Git repository, for code testing and

maintenance;

• A Moodle[5] instance for users’ training and a matchmaking tool, in order to enable

user community support;

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 11 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

• An instance of Keycloak[7] in order to enable a centralized user management and

single-sign-on mechanisms;

• An instance of CKAN[6], as the solution for data management, as it acts as data

catalogue and it can be also used to enable local storage of data and its movement;

• An instance of the Cloudify Orchestrator[8], with the Croupier plugin [13] (which

enables the connection to HPC systems), and a customized frontend (with its

corresponding backend) for launching the applications in the HPC systems in an easy

way, enabling application execution and visualization features.

2.2 Integration and Deployment Infrastructure

PSNC and HLRS cloud services offer infrastructure for the HiDALGO portal integration and

deployment to satisfy the CI/CD infrastructure requirements. Deployment infrastructure is

interconnected with Jenkins as mentioned in Figure-1 to coordinate all the activities in a

central location by portal developers and administrators. Similar integration and deployment

infrastructure configurations are provided to resolve the conflicts between those

environments. This is a similar concept to the web hosting services to provide staging and

production infrastructure to ensure a smooth transition of integrated code to the deployment

infrastructure without any changes. HLRS infrastructure uses KVM to enable the cloud

capability on the physical server and provides VMs for each service as mentioned in Table 2

for both integration and deployment infrastructure.

Production infrastructure is used to deploy the portal for public access, so it should be fast

enough and highly secure to provide interactive and trustworthy service. All the user access

will be redirected to the corresponding service VM to distribute workload properly to meet

the high service quality and avoid a single point of failure in the portal. If some service is slow

due to heavy traffic, then more computing power will be provided. Password authentication

is disabled in the VMs, so brute force attack is not possible to the infrastructure provided for

the portal. A firewall is set up between the HLRS portal deployment network and the outside

world to define security rules. The firewall rules are defined for administrative (SSH port: 22)

and end-user access (HTTP port: 80 and HTTPS port: 443) to enhance network security.

Physical infrastructure is accessible only from the HLRS network and provides access only for

the HLRS administrators to prevent any damage from the outside world.

Services HLRS Deployment VM
Configuration

PSNC Integration VM
Configuration

Jenkins 2 cores, 7 GB Memory, 30
GB Disk, Ubuntu 18.04
Server OS

4 cores, 8 GB Memory, 40
GB Disk, Ubuntu 18.04
Server OS

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 12 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Moodle 2 cores, 7 GB Memory, 30
GB Disk, Ubuntu 18.04
Server OS

4 cores, 8 GB Memory, 40
GB Disk, Ubuntu 18.04
Server OS

Askbot 2 cores, 7 GB Memory, 30
GB Disk, Ubuntu 18.04
Server OS

4 cores, 8 GB Memory, 40
GB Disk, Ubuntu 18.04
Server OS

Matchmaking 2 cores, 7 GB Memory, 30
GB Disk, Ubuntu 18.04
Server OS

4 cores, 8 GB Memory, 40
GB Disk, Ubuntu 18.04
Server OS

CKAN 2 cores, 7 GB Memory, 30
GB Disk, Ubuntu 18.04
Server OS

4 cores, 8 GB Memory, 40
GB Disk, Ubuntu 18.04
Server OS

Portal 2 cores, 7 GB Memory, 30
GB Disk, Ubuntu 18.04
Server OS

4 cores, 8 GB Memory, 40
GB Disk, Ubuntu 18.04
Server OS

Keycloak IDM 2 cores, 7 GB Memory, 30
GB Disk, Ubuntu 18.04
Server OS

4 cores, 8 GB Memory, 40
GB Disk, Ubuntu 18.04
Server OS

Cloudify 2 cores, 7 GB Memory, 30
GB Disk, Centos7

4 cores, 8 GB Memory, 40
GB Disk, Centos 7

Table 2 Integration and Deployment VMs configuration for each service

2.3 Portal Roadmap Implementation

Deliverable D5.2[1] was proposing a roadmap related to the potential user needs. The focus

was on enabling the execution of applications, as well as features related to users’

management and data management (the catalogue, basically). This has been the main focus

during the implementation tasks, although there were some changes with respect to the

original plans, progressing more on the part of community management tools, so it will be

possible to support them as soon as stakeholders are involved.

Main
Component

Original Plan for MS4 Current
Implementation

Single Sign On Login once and access all the services Ongoing

All services connected to one account Ongoing

Users to sign up themselves Done

Manage users’ roles and permissions Done

Group permissions and assign users to certain groups Done

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 13 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Portal
Maintenance

Have a sandbox environment, in order to test changes
quickly without risk

Done

Test changes automatically, so new features do not
break other parts of the code

Done

Application
Execution

Execute a pilot and retrieve the results that are
interesting to me

Done

Abstract users from the complexity of the underlying
infrastructure

Done

Application
Status
Visualization

Know the status of a running pilot, so users may
access partial results if they want to

Done

Check the logs of a pilot execution in order to know
what happened

Postponed

Explore and
Manage Data

Allow users to explore the data available, so they can
see data that can be used

Done

Create a public dataset and share it with other users,
if the user wants to

Done

Create private datasets, so only concrete users (or
groups of users) may know about it

Done

Internal
Storage

Store small input datasets in the platform, so they can
be used for running pilots

Done

External
Storage

Use datasets stored outside HiDALGO in order to
execute pilots

Done

Visualization Visualize datasets, so it is possible to show
demonstrations

Partially Done

Visualize datasets with temporal information, so it is
possible to understand them

Partially Done

Book Have all documentation organized for users Postponed

Developers can treat documentation as code, so it is
easier to keep it updated

Partially Done

Make available information for running pilots and for
using the provided UIs

Partially Done

Support Enable the possibility to keep on discussions through
email for general support information

Ongoing

Non-
Functional

Make the UI compliant with GDPR, so there will not
be any legal issues

Partially Done

Table 3 Original features proposed for MS4 vs current implementation

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 14 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Main
Component

Plan for other release Current
Implementation

Application
Execution

Do not require users to know a lot of technical details
in order to run pilots

Done

Application
Status
Visualization

Visualize the pilot workflow execution in real-time, so
it is possible to know its stage.

Partially Done

Explore and
Manage Data

Retrieve information about the datasets, such as
format, quality and quantity

Partially Done

Visualization Visualize datasets with geospatial information, so it is
possible to understand it better

Partially Done

Support Allow users to have open discussions in a forum, so
other users may benefit from such discussions

Ongoing

Training Facilitate pilots’ usage training material to users, so
they can get the full potential of the applications

Partially Done

Provide a catalogue of training courses, so users may
select those they are interested in.

Done

Table 4 Features not planned for MS4 but included in the current implementation

Additionally, the matchmaking tool is already available, for allowing users to find peers with

similar interests. This is a feature which was not planned neither for MS4 nor for MS5 release.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 15 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

3 CI/CD Infrastructure

3.1 Implemented Solution

HiDALGO portal integration would be automatic and follow the CI/CD principles. The best

open-source tools from the market are identified and installed for supporting automatic

integration, testing and deployment. Jenkins is the best candidate to coordinate all the

activities centrally. The latest version V2.176.1 is installed in the HLRS infrastructure with the

configurations and plugins to support both freestyle and pipeline workflows. Jenkins web

server provides seamless interconnection to the integration and deployment infrastructure

for frequent integration and deployment by developers and administrators to realize the

CI/CD benefits. Jenkins is installed in a standalone mode to have a single master handling all

the functionalities (GUI web service, Jenkins pipeline or Jenkins project running, etc).

Administrative privilege is disabled for all Jenkins users. Jenkins and its interconnection with

the different infrastructures, actors are depicted in Figure 1. Developers have administrative

privilege in the Virtual Machines (VMs) to manage all the activities in their respective VMs to

install and test their components. Administrators have the privileges required to reset the

VMs to the initial Operating System (OS) state manually when the developers request it by

Email. OS resetting will be very helpful for the developers when there is an OS crash or

unwanted issues during the development and integration phase.

Figure 1 – Jenkins web server and its interconnection with the portal integration (PSNC), deployment (HLRS)

infrastructure and different actors’ roles and accessibility

Jenkins pipeline workflow is adapted inside our project, so each service is required to provide

a pipeline to automate the manual software development tasks (E.g., building source code).

Ansible is the perfect combination with Jenkins[4] to automate the complete software

developments from building the components to deploy the integrated portal in the production

infrastructure, so AnsibleV2.8.1 is installed in the Jenkins server to support those activities.

Ansible will access remote infrastructure from the Jenkins server by SSH (Secure Shell) and

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 16 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

perform the activities as defined in the Ansible scripts and Jenkins pipeline. Jenkins pipelines

and Ansible scripts are managed inside the HLRS git repository infrastructure as a way to

follow an adequate code practice. There is a possibility to release all the code in GitHub as an

open-source repository, so sensitive details (credentials, etc) are encrypted and stored with

the help of the ansible-vault command in order to avoid storing in the plain text format. More

details regarding the Jenkins pipeline, integration and deployment infrastructure for the

portal follow in later sub-sections.

3.2 Software Development Pipeline (Jenkins Pipeline)

An automatic software development pipeline (or Jenkins pipeline) consists of multiple stages

and each stage runs specific functionalities with multiple tools to automate the software

development activities (i.e. compile, run automated tests, etc). Jenkins pipelines are written

in the Groovy language and follow a declarative style pipeline definition. Six stages are defined

in the Jenkins pipeline, which is detailed below.

1. Checkout SCM - Clone the Jenkins pipeline and Ansible script to Jenkins workspace

2. Install in the integration infrastructure - Build or install in the integration environment

3. Integration test – Test the component in the integration environment

4. Manual approval for deployment – Wait for manual approval

5. Install in the deployment infrastructure - Build or install in the deployment

environment

6. Deployment test - Test the component in the deployment environment

In the first stage, the Jenkins Git SCM plugin is used to connect with the repository and clone

the Jenkins pipeline code and Ansible script to the Jenkins working space for further

operations. Sensitive details are encrypted with ansible-vault, so those details cannot be

decrypted without the vault password. Vault password is stored in the Jenkins server to

decrypt the Ansible script in the next steps. Jenkins server is having an only admin account,

and disabled password authentication, so it is highly impossible to attack the system, obtain

the vault password and reveal the secret information at any cost.

In the second stage, respective service will be installed in the corresponding VMs in the

integration infrastructure by following the ansible script definitions. The remote VM is

connected through a secure shell and performs each step to complete the installation in the

PSNC integration environment provided for the specific service.

In the third stage, a basic smoke test is done in the integration environment to ensure the

installation is correct. Most of the components are open-source and rolled out the product for

many years, so checking accessibility by curl command is enough to guarantee the component

functionality and quality. Cloudify[8] and Moodle[5] are tested with a basic smoke test with

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 17 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

ping options to check the specific functionality after successful installation in the integration

environment.

In the fourth stage, the pipeline waits for manual approval from the product owner or admin

to proceed for the component deployment in the production infrastructure. This stage will be

waiting for one day to get the confirmation from the owner otherwise the pipeline would be

failed automatically and not deployed in the production infrastructure.

In the fifth stage, integrated and tested source code will be installed in the corresponding

production VMs after getting manual confirmation from the product owner. Ansible script will

be used to deploy in the deployment VM through a secure shell. All the components and

Jenkins server are installed by following best-practices to enable SSL certificates, etc to ensure

a secure portal access for the users. After the deployment, the product is ready for user access

and supports real-time operations.

In the sixth stage, a basic smoke test is done in the deployment environment to ensure the

installation is correct. Cloudify and Moodle are tested with a basic smoke test with ping to

check the specific functionality after successful installation in the deployment environment.

If there is a failure in one of the stages, then the whole pipeline fails, and the complete process

is aborted safely. Template of the basic pipeline is given in Appendix 1: Jenkins Pipeline

Definition, which is written in the Groovy language. Jenkins graphical view of the Cloudify

pipeline and its six stages is shown in Figure 2, and it is the same for other services

(Matchmaking and Moodle) pipeline definition.

Jenkins pipeline and Ansible script are easy to reproduce in similar environments, so same

Ansible script is used between integration and deployment infrastructure to install the

components, as well as to maintain integrity and reproducibility. Jenkins pipeline and Ansible

scripts are provided for Cloudify, Matchmaking, and Moodle with six stages as mentioned in

Figure 3 and will be provided for other modules later in the project lifetime. Matchmaking

manual test is done for different APIs by using the curl commands inside the Ansible scripts,

so all sort of integration and testing are possible within the Jenkins pipeline. Cloudify croupier

plugin unit test is done in the local system and its outcome (code coverage) will not change in

the different infrastructure so that it is manually tested with ‘tux’ and ‘python 2.7’. Cloudify

croupier plugin unit test and its code coverage is more than 60%, and it is detailed in Appendix

2: Cloudify Unit Test & Code Coverage. Cloudify croupier plugin unit test will be included in

the Jenkins pipeline to automate the process.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 18 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 2 – Graphical view of six stages Jenkins pipeline for Cloudify

3.3 Jenkins Web Navigation & Usage

Jenkins provides graphical web support, so the developers can build their components easily

after finalizing features for specific components or pushing minor changes to the source

repository in the HLRS Git. Users can find multiple Jenkins projects after login to the Jenkins

web server in the dashboard as shown in Figure 3, and view each project in detail by clicking

the corresponding project link. The users can start the Jenkins project by clicking the “Build

Now” button in the specific project, which is shown in Figure 4 for Moodle service. After

submitting the Jenkins project, developers can track the status of the submission at every

stage and analyse failures logs to understand the reasons behind the failure as shown in Figure

6. If the installation and test are successful in the Integration infrastructure, then it would wait

for manual approval as mentioned in Figure 5 before proceeding to deploy in the production

infrastructure. After getting the manual approval from the respective admin or developer to

roll out the new feature in the production infrastructure. If there are any failures in any stages,

then the remaining stages will be skipped, the pipeline job is aborted safely and the stages are

displayed in red colour as shown in Figure 5 and Figure 6 for build number 65, 66 and 68;

otherwise, all the stages would be in green colour and successfully rolled out the product to

deployment infrastructure as shown in Figure 2 for build number from 11 to 14.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 19 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 3 – List of Jenkins project in the dashboard after login

Figure 4 – ‘Build Now’ button to submit the Jenkins job, and track the Jenkins pipeline progress.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 20 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 5 – Jenkins Pipeline will wait for manual approval after the successful installation and test in the

Integration infrastructure.

Figure 6 – Jenkins pipeline failure and its reason can be analysed with logs when hovering over the failure

stage.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 21 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

4 Single Sign On

4.1 Implemented Solution

In order to enable Single Sign On (SSO) in the HiDALGO portal, the open source solution

Keycloak has been used. Keycloak[7] is an IdAM backed by Red Hat and allows to easily add

authentication and authorization to services and applications using standard protocols:

OAuth, OpenID Connect (OIDC)[10], which runs on top of OAuth 2.0, and SAML[9]. Keycloak

also offers additional features such as Social Login or LDAP support. In this project, the

authentication process will be built on top of OIDC instead of SAML, since OIDC was designed

with web use in mind. A future release of the Portal may include the possibility of using Social

Login.

Keycloak uses realms to manage users and resources. From the keycloak documentation: “A

realm manages a set of users, credentials, roles, and groups. A user belongs to and logs into a

realm. Realms are isolated from one another and can only manage and authenticate the users

that they control.”[7]. A HiDALGO realm has been created, with different clients for each of

the different services offered; currently this features the frontend and the backend but will be

extended in the future to other services such as the Moodle or the MatchMaker.

Figure 7 – Action Flow using Keycloak as the IdAM alongside several services

Basically, it provides some interfaces, so other components can invoke them in order to check

the credentials of the user who wants to use a functionality. If the user has the access granted,

it releases a security token that is used, later, by the component implementing the

functionality to check whether the token is valid and the user can execute the functionality

(no matter whether it is a web service or a full application like Moodle or Askbot).

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 22 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

4.2 Available APIs

Keycloak offers a web console to configure your realms, create and manage users, establish

roles, permissions and resources, etc.

Keycloak exposes its functionality via an OIDC[10] endpoint; as such, connections are

performed using an HTTP REST API, using JSON as the data format. Since Keycloak is an OIDC

compliant IdAM, generic OIDC libraries are supported, while keycloak-specific adapters for

popular platforms such as client-side Javascript are also offered. The following helper libraries

where used:

• Keycloak-angular: In order to use SSO in the portal frontend, this library was used,

which allows an easy keycloak use in Angular applications

• Mozilla-Django-OIDC: This library, made by Mozilla, allows developers to connect to

an OIDC endpoint using Django. It has been used in the Portal Backend to authenticate

HiDALGO services.

In this project, no raw HTTP requests were performed to access Keycloak functionality.

Instead, adapters were used to allow for better programmability.

4.3 How to Use and Examples

In Figure 8, the Keycloak Administration Console is shown. All aspects of a realm can be

configured from this console, as well as administration settings itself.

There are two options to sign in to a Keycloak Realm. First, Keycloak provides a customizable

login form shown in Figure 9 (the customization has not taken place yet), to which applications

can redirect in order to log in. This is recommended because the login happens inside the

Keycloak server and thus the applications have no access to the user credentials.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 23 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 8 – Keycloak Administration Console

The other option is to send a POST HTTP request using the “Direct Access” Flow with the user

credentials. The first option will be used in the HiDALGO portal.

Figure 9 – Login form provided by Keycloak

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 24 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

5 Workflows Orchestration

5.1 Implemented Solution

In order to orchestrate the Workflows designed for each use case, the Cloudify[8] framework

has been used. Per the Cloudify documentation: “Cloudify is an open source cloud

orchestration framework. Cloudify enables you to model applications and services and

automate their entire life cycle, including deployment on any cloud or data centre

environment, monitoring all aspects of a deployed application, detecting issues and failure,

manually or automatically remediating such issues, and performing ongoing maintenance

tasks.”[8].

Cloudify uses a Domain-Specific Language (DSL) based on TOSCA[11], a standard language to

describe a topology of cloud-based web services, their components, relationships and its

management during their lifetime [12]. Cloudify manages workflows using Blueprints, which

consist each of one or more TOSCA files.

In order to orchestrate workflows in HPC environments, ATOS developed a Cloudify plugin

called Croupier. Croupier extends the Cloudify functionality by providing custom node types

used to describe HPC infrastructure interfaces or jobs that will run on the infrastructure.

Additional functionality includes describing jobs that will be executed inside a Singularity

container or expressing dependencies between Croupier jobs. An example of a Cloudify

Blueprint using the Croupier extensions can be found in the Annex 3. This Blueprint describes

four jobs that should run in an HPC node, either directly in hardware or using Singularity. Also,

the user can specify dependencies between jobs, the resources needed, and scripts required

to initialize the jobs, if required. More example Blueprints can be found at the repository

https://github.com/ari-apc-lab/croupier-resources

Using Cloudify will allow scientists to easily run their applications across the HiDALGO

environment without needing knowledge about deployments or DevOps.

5.2 Available APIs

A Django backend has been developed using the Django-Rest-Framework (DRF) that, along

with the croupier plugin, enables cloudify to orchestrate HPC and batch jobs. This backend has

been secured with the Keycloak IdAM to ensure only authorized users have access to the

computation resources.

Cloudify can be accessed either via a web console, or using the cloudify CLI which, in turn, calls

an HTTP REST API that exposes the Cloudify functionality. In this project, the Python cloudify-

rest-client has been used to integrate Cloudify in the backend.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 25 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

In the HiDALGO Portal, there are two important concepts: Applications and Instances.

Applications are created based on a Cloudify Blueprint, and Instances are individual executions

of an Application given some inputs and resources; hence, multiple Instances of an Application

can coexist.

The backend API that will be accessed by the Portal Frontend in order to upload Blueprints

and execute Instances consists of the following REST endpoints:

REST API endpoints API Description

apps Accepts several REST Verbs.

• Get all the applications - Http GET

• Create a new application - Http POST

• Update an existing application – Http PUT

apps/{id} Used to manipulate or obtain a specific question,

given its identifier. Accepts several REST Verbs.

• Get a specific application - Http GET

• Delete the specific application - Http

DELETE

apps/{term} Used to obtain applications whose name contains

the term searched.

• Get all the matching applications - Http GET

instances/{appid} Accepts several REST Verbs.

• Get all the instances from an Application -

Http GET

• Create a new instance of an Application - Http

POST

• Update an existing instance of an Application

– Http PUT

instances/{id} Used to manipulate or obtain a specific instance,

given its identifier. Accepts several REST Verbs.

• Get a specific instance - Http GET

• Delete the specific instance - Http DELETE

instances/{term} Used to obtain instances whose name contains the

term searched.

Get all the matching instances - Http GET

instances/{id}/events Obtains all the events related to an instance.

List the events - Http GET

Table 5 API REST of the Orchestrator

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 26 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

An example Cloudify Blueprint using the croupier plugin is at Annex 3, as mentioned before.

More example Blueprints can be found at the repository https://github.com/ari-apc-

lab/croupier-resources

5.3 How to Use and Examples

As mentioned before, the Cloudify server can be accessed via a web-based console. This

console is shown in the Figure 10. This graphical interface allows an operator to, according to

the Cloudify Documentation:

• Upload blueprints to the Cloudify Manager

• Deploy and install and remove new services

• Monitor and inspect the status of services

• View logs and events

It is important to note that all functions that can be performed using the Cloudify Console can

be done using either the CLI/Python libraries, since they both use the Cloudify REST API.

Figure 10 – Cloudify Web Console main dashboard

 In the left menu, the user can upload new Blueprints, either from their local computer or from

a catalog. Once a Blueprint is uploaded, a new Deployment can be created, which generates

a physical representation from the logical Blueprint. Note that creating a deployment does

not create resources, for the resources to be reserved, the install workflow must be executed.

More information about Deployments and executing Workflows can be found in the Cloudify

documentation [8].

https://github.com/ari-apc-lab/croupier-resources
https://github.com/ari-apc-lab/croupier-resources

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 27 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

In the following table more detailed examples appear on how to use the backend API, and the

expected responses.

HTTP Requests Response

curl $API/apps/ [{“id”: 0, “name”: “Cholesky”, “description”:

“Performs a Cholesky decomposition”,

“owner”: 0}, {“id”: 1, “name”: “Heat

Transfer”, “description”: “Performs a heat

transfer simulation using the Gauss-Seidel

method”, “owner”: 0}]

curl $API/apps/0 {“id”: 0, “name”: “Cholesky”, “description”:

“Performs a Cholesky decomposition”, “owner”:

0}

curl -d '{“name”: “Word

Count”, “description”:

“Performs a Word Count on

an input”, “owner”: 0}’-X

POST $API/apps/

Note: The Blueprint file would be

encoded in the body of the request

{“id”: 2, “name”: “Word Count”, “description”:
“Performs a Word Count on an input”, “owner”:
0}

Table 6 Usage examples for the Orchestrator REST API

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 28 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

6 Training

6.1 Implemented Solution

Training is one of the services in the HiDALGO portal. The purpose is to disseminate the

training materials and build a strong community around the generated knowledge, so we

identified and evaluated some open-source tools to achieve the expected results. Moodle[5]

is a well-known open-source eLearning management system developed for conducting

courses online, so it is the perfect platform to provide training for the HiDALGO end-users.

Moodle’s latest version V3.7 is installed in the production infrastructure with the rudimentary

functionalities to integrate with the portal. Following features are supported in the installed

Moodle version.

1. Dashboard to summarise a list of courses and course notifications after Login.

2. Teacher, Student and Admin roles to define functionalities and privileges.

3. Urban Air Pollution (UAP) use cases training course template is provided.

4. The course instructor can upload the course files (maximum 2MB) to the course topic

wise and link another web page as a hyperlink. The course instructor can add forum,

feedback, assignment, questions and survey as shown in Figure 12 and Figure 13.

5. Student can enrol the course, download the materials and track the course progress.

Figure 11 – Moodle Software Stack

A Jenkins pipeline and an Ansible script are defined to deploy the components automatically

and they activate the main functionalities to ensure the expected behaviour of our training

system. Moodle is installed in a dedicated environment with the official sub-domain with

LAMP (Linux, Apache, Moodle and PHP) software stack as shown in Figure 11.

Moodle has various plugins and configurations to enhance its default behaviour by providing

more advanced features. The OAuth2 authorization configuration will be enabled in the

Moodle to achieve expected Single Sign On (SSO) behaviour with Keycloak IDM. Different roles

and responsibilities will be assigned automatically during the user registration by following

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 29 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

the OAuth2 protocol. Course report and student feedback will be collected regularly and will

used to improve the services throughout the project’s lifetime.

Moodle source code is available on https://github.com/moodle/moodle

6.2 Available APIs

Moodle is a standalone application with its own GUI, so it is installed as an individual

component with the separate domain name (https://moodle.hidalgo-project.eu/). The admin

account has the capabilities to manage all the users, roles and courses details. The student

account can be used to enrol in a course and to view course materials. The courses are

organised with multiple topics and has different functionalities to include Quiz, Forum,

Feedback, etc as shown in Figure 12.

Figure 12 – Moodle course with multiple topics. Each topic with Course content, Question, Feedback,

Assignment, and Survey, etc.

6.3 Moodle Usage

Moodle is a standalone and interactive web application, which is accessible on the Internet

with a web browser. Moodle has its own login page with HiDALGO logo and has multiple roles

(manager, course instructor, and student) to restrict the user access during the registration.

The manager role has complete administrative access to manage the whole site (create a

course, manage users and roles, etc), which is detailed in subsection 6.3.1. The student role

has limited privileges to self-enrol the course and access the course materials, which is

detailed in subsection 6.3.2. Moodle has multiple features and configurations, which is beyond

the scope of this deliverable, so the main features are covered to get the overview of usage.

https://github.com/moodle/moodle
https://moodle.hidalgo-project.eu/

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 30 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

6.3.1 Manager and Course Instructor Functionalities

The manager has the complete admin access of the system, so they have a privilege to manage

the users, change the configuration to enable new functionality, etc. The course instructor is

the admin for a specific course, so they can customize the course content as mentioned in

Figure 13 and manage student enrolment as mentioned in Figure 14.

Figure 13 – Manager and Course instructor has the capabilities to edit the course content.

Figure 14 – Manage student enrolment manually by admin and Course Instructor

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 31 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

6.3.2 Student Functionalities

Students can self-enrol as mentioned in Figure 15 and can track the progress of course

completion as shown in Figure 16.

Figure 15 – Students can self-enrol by clicking "Enrol me" button.

Figure 16 – Students can track the course progress, calendar and other notification in the dashboard

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 32 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

7 Data Catalogue

7.1 Implemented Solution

Contemporary IT systems have to execute applications based upon workflows, supporting

complex scenarios conducted in order to get some experimental results. Since many of them

are data-oriented processing environments, one of the fundamental components in this case

is the data catalogue. Data Catalogue (DC) is considered as Data Management System (DMS)

which simplifies data discovery by users, offering a complete set of services. These services

provide users with information what datasets are available, complementary description in the

form of metadata, search and browsing functionality, organizing datasets along with

organizations and defining different access levels to data. Moreover, they implement different

access methods either as web interfaces for human interaction or Application programming

Interfaces to enable automation by service-to-service interaction.

In the HiDALGO project the role of DC is played by the Comprehensive Knowledge Archive

Network (CKAN)[6], which is integrated with the HiDALGO Portal.

The current version of the Data Manager component is running on a set of virtual machines

with Ubuntu 18.04 hosted at the Poznań Supercomputing and Networking Center and can be

accessed via the address https://hidalgo1.man.poznan.pl/. The CDS harvester functionality

can be accessed through this URL: https://hidalgo1.man.poznan.pl/cds/

Figure 17 – The CKAN system – datasets summary page

https://hidalgo1.man.poznan.pl/cds/

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 33 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

In order to increase the reliability of the data catalogue system, the standard CKAN[6]

environment configuration was enhanced by a number of virtual machines and services to

provide mirrored services which can complement each other in case of failure. Currently, it is

composed of two HA Proxies, two CKAN instances including databases and files systems.

It is configured to deliver Bi-Directional Replication for PostgreSQL (Postgres-BDR, or BDR),

which is the open source multi-master replication system for these databases to reach full

production status. BDR is specifically designed for geographically distributed clusters, using

highly efficient asynchronous logical replication, supporting anything from 2 to more than 48

nodes in a distributed database. Discussed configuration is presented on the picture below.

Figure 18 – The configuration of the enhanced CKAN environment

7.2 Available APIs

The data catalogue service in the HiDALGO project is integrated with other services in order

to provide a complete bunch of functionalities. In this respect, a quite vital aspect of delivered

functionality is the existing Application Programming Interface (API). It facilitates coupling of

services into one collaborative system.

The CKAN system offers API capabilities in Remote Procedure Call (RPC) style

(https://ckan.org/portfolio/api/). The API offered functionality is very wide and covers all

functions which correspond to actions, which can be done using web the interface.

Security is guaranteed by authorization operation. Calling functions requires providing API key

in an HTTP request in the form of either an Authorization or X-CKAN-API-Key header.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 34 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

The CKAN API is called as HTTP POST request to a relevant URL using JSON language. Both

parameters and responses are provided in a JSON dictionary. Calling the API functions can be

made either from command-line interface or supportive libraries available for various bunch

of programming languages.

The response is a JSON dictionary with three keys:

- success: true or false, in case or “false” status details are provided in the "error" key,

- result: result of the called function, type and value depend on called function,

- help: string to the documentation for corresponding function.

Consistency with previous versions ensures API versioning. If not specified, the latest API

version is used. Currently version 3 is the only available API version.

FileStore API

CKAN’s FileStore extension has its own API. In order to manipulate datasets and files the

following API functions are used:

- resource_create() – creates a new resource in the CKAN and upload file

- resource_update() – updates already existing resource

Data and pairs (key, value) can be uploaded (JSON object) through the API. In order to post

the binary data, the extra key upload must be used.

DataStore API

The DataStore in the CKAN is understood as database for collections of tables with unknown

relationships. To create a new DataStore resource a corresponding CKAN resource (file) must

exist first. DataStores can be previewed at the CKAN web site (recline extension) which

facilitates user’s work. CKAN’s DataStore extension has its own API for data management

without the need to download the entire file first.

Data can be written incrementally to the database table using the API. The following functions

are available:

- insert - data a new row is added

- update – data in specific row are altered

- deleted – a specified row is deleted.

- add column – a new column is added to an existing table

An exemplary usage of DataStore API (adding a new table) is presented below:

ckanext.datastore.logic.action.datastore_create(context, data_dict)

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 35 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

7.3 How to Use and Examples

The CKAN system allows to organize stored files around the dataset concept, which is used to

group one or more files with the corresponding metadata for describing the content (see

Figure 19). Metadata provides relevant information like: author info, update releases,

licensing scheme, etc. Thanks to the CKAN flexibility, the metadata scheme can be adjusted

by developers to reflect current project needs. Properly described metadata datasets facilitate

the exploration process. When a user performs a search on CKAN resources about a specific

set of data, the results are shown as a list of datasets.

Figure 19 – A new dataset creation in the CKAN system.

Thanks to the CKAN extension capabilities, the metadata information about the datasets can

be improved and increased. One of them is drel which allows the creation and management

of dataset relationships. Users are able to create the following types of relationships between

the datasets: derives from, has derivation, depends on, has dependency, linked from, links to,

child of and parent of. These relationships can be created during the dataset creation or from

the management page of the dataset itself. The existing relationships can be viewed on the

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 36 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Dataset Relations tab on the dataset’s page, the related datasets can also be navigated from

here.

Figure 20 – Dataset relationship management in the CKAN.

CKAN grants creation of organisations which are collections of users with different levels of

authorisation and a collection of datasets (private or public). For a better illustration please

see Figure 21. Groups in the CKAN allow the creation of catalogues which could be focused on

a certain subject(s) or may be a collection of datasets, which belong to a project or a team.

Datasets can be managed (added, removed) only the group members.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 37 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 21 – Defining organizations in the CKAN system.

In order to feed structures with data, CKAN provides a harvesting mechanism that can be used

to consume data either from user’s local machine or from a remote system (Figure 22).

Moreover, registering of other CKAN instance(s) as a source allows feeding metadata on

defined basis (manual, daily, weekly, biweekly and monthly). Once the registration process is

complete, CKAN starts pulling the metadata along with the resources to the local instance in

the background.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 38 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 22 – CKAN data harvestation process.

The extension disqus adds the functionality that allows commenting on the existing datasets

and provides a voting system for these comments (see Figure 23). It is also possible to leave

comments as a guest by providing a name and an email address. Users are not required to be

registered to Disqus itself in order to comment, since CKAN handles that.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 39 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Figure 23 – The disqus extension to the CKAN enables commenting feature.

Thanks to the openness and availability of source codes the CKAN enables implementation of

customized modules (extensions). An exemplary development (CDS data harvester) is

discussed and developed in the context of WP3.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 40 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

8 Users Matchmaking

8.1 Implemented Solution

Matchmaking is a social networking service to strengthen the HiDALGO community by

suggesting similarly interested peers and following them according to their interests. This

service is developed and running as an individual web service by following the REST

architecture. High-level architecture of the matchmaking and its corresponding REST APIs

endpoints are detailed in Figure 24. Users profiles are managed with the details of liked users

list and answers to the multiple-choice questions, which is saved in the PostgreSQL database.

Matchmaking algorithm calculates the compatibility between two users based on their

profiles’ information. The algorithm pseudocode is detailed step by step below, which is

based on the users’ profile data and follows the geometric mean algorithm to provide a match

percentage for the specific pair of users. If they answer more questions with similar answers,

then their compatibility will increase, so the user has to answer all the questions to minimize

error in the calculation.

1. Get answers and importance level from the users for all the

multiple-choice questions

a. Collect their own answer, importance level for each

question

b. Collect expected answers, importance level from others

for each question

2. user_1_points, user_2_points <- 0

3. user_1_total_points, user_2_total_points <- 0,0000001

4. Convert importance level to importance level points for

further numerical analysis

5. questions_in_common <- Get the common list of questions

answered by user_1 and user_2

6. while question_c in questions_in_common:

a. if user_1’s answer for question_c is matched with

user_2’s expected answer for question_c

i. user_1_points <- user_1_points + expected

importance level points of user_2

b. if user_2’s answer for question_c is matched with

user_1’s expected answer for question_c

i. user_2_points <- user_2_points + expected

importance level points of user_1

c. user_1_total_points <- user_1_total_points + expected

importance level points of user_2

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 41 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

d. user_2_total_points <- user_2_total_points + expected

importance level points of user_1

7. user_1_match_percent <- user_1_points/user_1_total_points

8. user_2_match_percent <- user_2_points/user_2_total_points

9. match_percentatge <-

(1/questions_in_common)√(user_1_match_percent *

user_2_match_percent)

10. return match_percentatge * 100

Multiple-choice questions and its answers are collected from users in line number 1 and then

abstract answers are converted into numerical points by using the question’s importance level

in line number 4. Commonly answered questions are filtered in line number 5 based on the

user_1 and user_2 profile data. Individual users’ match percentage is calculated against

another user’s expected answer and their importance level as described from line number 6

to 8. Common match between partner is calculated by using the geometric mean of individual

users’ match percentage on line number 9.

Figure 24 – High-level architecture of matchmaking service

Python Django rest framework is used for developing the REST service, and each rest resource

is defined as a Django application to improve maintainability. All the details in the REST APIs

(Questions, User answers, Match percentage, etc) are stored in the PostgreSQL database for

leveraging the benefits of database security and storing in long-term storage. JSON (JavaScript

Object Notation) data is exchanged between the portal frontend and service to manage the

data effectively and efficiently by following the industry standards. REST API and its behaviour

are well defined and documented in the RAML (REST API Modelling Language) during the

design phase to share with the portal developer. Matchmaking static web document is

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 42 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

generated from the raml file automatically by using raml2html tool, which is giving interactive

access to all the REST APIs and its usage for different HTTP requests as shown in F.

This service is deployed in a local virtual machine with the accessibility only to web portal

backend for reducing vulnerabilities from the Internet. Jenkins pipeline with Ansible script is

defined to deploy the service automatically upon the Ubuntu 18.04 server and launch the

service with multiple process Gunicorn HTTP server to improve the responsiveness of each

Http request. Postgresql database is used as the backend database to store all the

matchmaking data, which is the default database to integrate easily with the Django rest

framework.

The portal frontend will consume the service and render the JSON data in a graphical manner

for end-user access. The Matchmaking tool will provide SSO authentication and manage user

details in the Keycloak IDM.

Matchmaking Source code is available on https://github.com/hlrs-121991-

germany/matchmaking_rest_user.

8.2 Available APIs

All the matchmaking APIs and its purpose are detailed in Table 7, which is related to the high-

level architecture in Figure 24. User answers are collected by Questions, Answers and User-

answers endpoints. User details are managed in the users' endpoint. Users relationship

calculation is done by Matches API to measure the percentage of compatibility between users.

Liked users’ details are managed inside the User-likes endpoints.

Serial

No

REST API endpoints API Description

1 questions Questions endpoint is used to do the following

actions.

• Get all the list of questions - Http GET

• Create a new question - Http POST

2 questions/{id} Questions/id endpoint is used to do the

following actions on a specific question.

Question is identified by question’s identity

number (id).

• Get the specific question - Http GET

• Delete the specific question – Http DELETE

• Update the specific question – Http PUT

3 answers Answers endpoint is used to do the following

actions.

• Get all the list of answers - Http GET

• Create a new answer – Http POST

https://github.com/hlrs-121991-germany/matchmaking_rest_user
https://github.com/hlrs-121991-germany/matchmaking_rest_user

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 43 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

4 answers/{id} Answer endpoint is used to do the following

actions on a specific answer. Answer is

identified by answer’s identity number (id).

• Get the specific answer - Http GET

• Update the specific answer - Http PUT

• Delete the specific answer – Http DELETE

5 user-answers The user-answers endpoint is used to do the

following actions.

• Get all the list of user’s answer - Http GET

• Create a new user’s answer - Http POST

6 user-answers/{id} The user-answers endpoint is used to do the

following actions on a specific user’s answer.

UserAnswers is identified by user answers’

identity number (id).

• Get the specific user’s answer - Http GET

• Update the specific user’s answer - Http

PUT

• Delete the specific user’s answer - Http

DELETE

7 matches Matches endpoint is used to do the following

actions.

• Get all the matches - Http GET

• Get specific user details by filtering with

“user” attribute

8 user-likes The user-likes endpoint is used to do the

following actions.

• Get all the list of liked user - Http GET

• Get specific user details by filtering with

“user” attribute

• Create a new user-likes – Http POST

9 user-likes/{user_name} User-likes/{id} endpoint is used to do the

following actions on a specific user.

UserAnswers is identified by username or user

identity number (id).

• Get the specific user’s list of liked users -

Http GET

• Update the specific user details – Http PUT

• Delete the specific user – Http DELETE

10 users Users endpoint is used to do the following

actions.

• Get all the list of users - Http GET

• Get specific user details by filtering with

“user” attribute

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 44 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

• Create a new user – Http POST

11 users/{user_name} Users/{user_name} endpoint is used to do the

following actions on a specific user.

UserAnswers is identified by username or user

identity number (id).

• Get the specific user - Http GET

• DELETE the specific user – Http DELETE

Table 7 All the REST APIs and its description details.

8.3 How to Use and Examples

Table 8 gives the detailed usage scenarios for Answers API, which is same for other APIs

mentioned in Table 9 except for matches API. Matches API is responsible for the main

matchmaking calculations, so it is allowed to support read-only HTTP GET requests for secure

operations. The curl command is used for raising the Http request and its outcome is provided

in a short form to get the crux of the output.

Sr.

N

o

HTTP Request to /answers

API

HTTP Response from /answers API

1 1) curl -d '{"text" :

"Natural Science (Eg.

Physics, Chemistry,

Biology, etc)..."}' -X

POST

http://172.18.18.8/matc

h-api/v0/answers
2) curl -d '{"text" :

"Natural Science (Eg.

Physics, Chemistry,

Biology, etc)..."}' -X

POST

http://172.18.18.8/matc

h-api/v0/answers

1) {"id":31,"text":"Natural Science (Eg. Physics,

Chemistry, Biology, etc)..."}

2) {"text":["answer with this text already exists."]}

Same answer cannot be created multiple times, so the

error is generated for it.

2 curl

http://172.18.18.8/match-

api/v0/answers

[{"id":1,"text":"Mathematician"},{"id":2,"text":"Compu

ter Programmer"},

……….

{"id":31,"text":"Natural Science (Eg. Physics,

Chemistry, Biology, etc)..."}]

3 curl

http://172.18.18.8/match-

api/v0/answers/31

{"id":31,"text":"Natural Science (Eg. Physics,

Chemistry, Biology, etc)..."}

http://172.18.18.8/match-api/v0/answers
http://172.18.18.8/match-api/v0/answers

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 45 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

4 1) curl

http://172.18.18.8/matc

h-api/v0/answers/31
2) curl -X PUT

http://172.18.18.8/matc

h-api/v0/answers/31 -d

'{"text":"V V Good"}'

3) curl

http://172.18.18.8/matc

h-api/v0/answers/31

1) {"id":31,"text":"Natural Science (Eg. Physics,

Chemistry, Biology, etc)..."}

2) {"id":31,"text":"V V Good"}

3) {"id":31,"text":"V V Good"}

5 1) curl

http://172.18.18.8/matc

h-api/v0/answers/31
2) curl -X DELETE

http://172.18.18.8/matc

h-api/v0/answers/31
3) curl

http://172.18.18.8/matc

h-api/v0/answers/31

1) {"id":31,"text":"V V Good"}

2) No RESPONSE. HTTP 204 status code returned for

successful deletion.

3) {"error":{"code":404,"message":"Answer is not

found"}}

Answer object is already deleted, so resource not found

error raised.

Table 8 Answers API with detailed usage scenarios with Http GET, POST and PUT requests

Sr

.

N

o

HTTP Request HTTP Response

1 1) curl

http://172.18.18.

8/match-

api/v0/questions
2) curl

http://172.18.18.

8/match-

api/v0/questions/

1

[{"id":1,"text":"What is your

background?","answers":[{"id":1,"text":"Mathematician"},

{"id":2,"text":"Computer Programmer"},{"id":3,"text":"Data

Scientist"},{"id":4,"text":"Business &

Sales"},{"id":5,"text":"Internet"}]},

……….

{"id":12,"text":"Which HiDALGO use case is interesting for

UUU?","answers":[{"id":27,"text":"Social Networks (SN)

Pilot"},{"id":28,"text":"Migraton

Pilot"},{"id":29,"text":"Generic

Usecase"},{"id":30,"text":"Yess"}]}]

2 1) curl

http://172.18.18.

8/match-

api/v0/users
2) curl

http://172.18.18.

8/match-

api/v0/users?

[{"id":1,"username":"test1"},

……….

{"id":5,"username":"test"}]

http://172.18.18.8/match-api/v0/answers/31
http://172.18.18.8/match-api/v0/answers/31
http://172.18.18.8/match-api/v0/answers/31
http://172.18.18.8/match-api/v0/answers/31
http://172.18.18.8/match-api/v0/answers/31
http://172.18.18.8/match-api/v0/answers/31
http://172.18.18.8/match-api/v0/answers/31
http://172.18.18.8/match-api/v0/answers/31
http://172.18.18.8/match-api/v0/questions
http://172.18.18.8/match-api/v0/questions
http://172.18.18.8/match-api/v0/questions
http://172.18.18.8/match-api/v0/questions
http://172.18.18.8/match-api/v0/questions
http://172.18.18.8/match-api/v0/questions
http://172.18.18.8/match-api/v0/users
http://172.18.18.8/match-api/v0/users
http://172.18.18.8/match-api/v0/users
http://172.18.18.8/match-api/v0/users
http://172.18.18.8/match-api/v0/users
http://172.18.18.8/match-api/v0/users

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 46 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

user=dinesh1219

91

3 1) curl

http://172.18.18.

8/match-

api/v0/user-

answers
2) curl

http://172.18.18.

8/match-

api/v0/user-

answers?

user=dinesh1219

91

[{"id":1,"user":{"id":1,"username":"test1"},"question":

{"id":1,"text":"What is your

background?"},"my_answer":{"id":1,"text":"Mathematician"},

"my_answer_importance":"Mandatory","their_answer":

{"id":1,"text":"Mathematician"},"their_importance":"Mandator

y"},

………..

user":{"id":4,"username":"test4"},"question":{"id":10,"text":"

What is your HPC

experience?"},"my_answer":{"id":24,"text":"HPC

Visualization tools to export

results"},"my_answer_importance":"Mandatory",

"their_answer":{"id":22,"text":"HPC programming to develop

scientific models"},"their_importance":"Mandatory"}]

 1) curl

http://172.18.18.

8/match-

api/v0/user-likes
2) curl

http://172.18.18.

8/match-

api/v0/user-

likes?
user=dinesh1219

91

[{"user":{"id":1,"username":"test1"},"liked_users":

[{"id":2,"username":"test2"},{"id":3,"username":"test3"}]},

……….

{"user":{"id":4,"username":"test4"},"liked_users":

[{"id":2,"username":"test2"},{"id":3,"username":"test3"}]}]

 1) curl

http://172.18.18.

8/match-

api/v0/matches
2) curl

http://172.18.18.

8/match-

api/v0/matches?
user=dinesh1219

91

[{"id":1,"user_a":{"id":1,"username":"test1"},"user_b":

{"id":2,"username":"test2"},"match_decimal":"0.98192260","q

uestions_answered":11},

………..

"user_a":{"id":4,"username":"test4"},"user_b":{"id":5,

"username":"test"},"match_decimal":"0.00000000","questions_

answered":0}]

Table 9 All the APIs supports GET, PUT and POST request except for matches API.

http://172.18.18.8/match-api/v0/user-answers
http://172.18.18.8/match-api/v0/user-answers
http://172.18.18.8/match-api/v0/user-answers
http://172.18.18.8/match-api/v0/user-answers
http://172.18.18.8/match-api/v0/user-likes
http://172.18.18.8/match-api/v0/user-likes
http://172.18.18.8/match-api/v0/user-likes
http://172.18.18.8/match-api/v0/user-likes
http://172.18.18.8/match-api/v0/user-likes
http://172.18.18.8/match-api/v0/user-likes
http://172.18.18.8/match-api/v0/user-likes
http://172.18.18.8/match-api/v0/matches
http://172.18.18.8/match-api/v0/matches
http://172.18.18.8/match-api/v0/matches
http://172.18.18.8/match-api/v0/matches
http://172.18.18.8/match-api/v0/matches
http://172.18.18.8/match-api/v0/matches

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 47 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

9 Frontend and Applications GUI

9.1 Implemented Solution

The Frontend of the HiDALGO project has been developed as an Angular Application. Angular

is a frontend framework used for developing Single-Page Applications (SPA). SPAs work by

rendering the websites in the client and rewriting them instead of loading them from the

server, which avoids disruption between different pages.

The Frontend allows users to execute, stop and monitor their applications, using the Backend

described in section 5. In the future more functionality will be available, and will connect with

different HiDALGO services, such as the Moodle Training section, and will allow for Data

Visualization and embedded Notebooks for manipulating and performing tests on the

datasets generated by the HiDALGO applications.

9.2 Available APIs

The Frontend is a web application accessible via a web browser. In the next section, more

details will be provided as to how to operate the website.

9.3 How to Use and Examples

The Portal Frontend is still under development and in prototype phase, so the styles and/or

position of the different elements may, and probably will, differ in the future.

When the user lands in the portal, they will be prompted to log in, as shown in the Figure 9.

This will authenticate the user in the whole HiDALGO ecosystem, as explained in the section

3. Once Authenticated, they be presented with the dashboard. The user will have the ability

to submit an Application Cloudify Blueprint. This screen is shown in the Figure 25. The

blueprint will be sent to the Backend, who will check its fields and, if everything is correct, will

send it to the Cloudify server to deploy and execute in the HiDALGO infrastructure.

The user will have the ability to monitor running applications as well. The logs will be displayed

under each Application in order to inspect possible problems and analyse jobs performance.

First of all, the user must install the blueprint, so the application will be available to be

deployed through the Orchestrator. Once the blueprint is installed, it is possible to create as

many instances as required, by providing the adequate input files. In case the application

workflow is already installed, it is listed by the GUI.

In order to install an application, it is necessary to provide the name and its description. After

that, the workflow must be provided with the ‘Choose File’ button (or doing drag and drop).

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 48 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Once it is done, we must provide the inputs of the workflow (according to the definitions of

the blueprint) and the application will be submitted to the corresponding HPC centre.

Figure 25 – Form to submit new Cloudify Blueprints

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 49 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

10 Conclusions

The consortium has progressed towards the implementation of the first release of the

HiDALGO Portal, following the design already presented in D5.2[1]. We have focused the

implementation on three main features: the execution of applications abstracting the

complexity of HPC systems, the community support tools and the data management aspects.

Additionally, the consortium has been working in setting up a solution for Continuous

Integration and Deployment, as a way to support the development and maintenance of

HiDALGO components.

The current implementation differs a bit with the original plan, since some features (like the

documentation part) have been postponed in order to boost the community building part,

also because of the feasibility to get enough progress.

In the end, the selected tools and applications for the Portal are open source and well-proved

(CKAN, Moodle, Cloudify with Croupier, etc.), so the Portal will be robust enough and the

consortium will have access to the code, in order to carry out any required adaptation.

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 50 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

References

[1] HiDALGO, D5.2 – Portal Architecture and Roadmap. Carnero, Javier. 2019.

[2] HiDALGO, D6.1 – Requirements Process and Results Definition. Maritsch, Martin. 2019.

[3] HiDALGO, D6.2 – Workflow and Services Definition. Maritsch, Martin. 2019.

[4] Jenkins. URL: https://jenkins.io/. Last visited in December 2019.

[5] Moodle Training Service. URL: https://www.moodle.org. Last visited in December 2019.

[6] CKAN: https://ckan.org/, last visited in December 2019

[7] Keycloak Server Administration Guide. URL:

https://www.keycloak.org/docs/latest/server_admin/, last visited in December 2019

[8] About Cloudify. URL: https://docs.cloudify.co/5.0.0/about/, last visited December 2019

[9] OASIS. Security Assertion Markup Language (SAML) 2.0 Technical Overview. 22nd July

2004. http://xml.coverpages.org/SAML-TechOverviewV20-Draft7874.pdf. Last visited in

December 2019.

[10] OpenID. OpenID Connect Core 1.0. 8th November 2014.

https://openid.net/specs/openid-connect-core-1_0.html. Last visited December 2019.

[11] OASIS. TOSCA Simple Profile in YAML Version1.3. 18th September 2019.

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-

Simple-Profile-YAML-v1.3-cs01.pdf. Last visited December 2019.

[12] Topology and Orchestration Specification for Cloud Applications Version 1.0. 25

November 2013. Oasis Standard. URL: http://docs.oasis-

open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html, last visited December 2019

[13] Croupier GitLab Repository. URL: https://github.com/ari-apc-lab/croupier

https://jenkins.io/
https://www.moodle.org/
https://ckan.org/
http://xml.coverpages.org/SAML-TechOverviewV20-Draft7874.pdf
https://openid.net/specs/openid-connect-core-1_0.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/cs01/TOSCA-Simple-Profile-YAML-v1.3-cs01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://github.com/ari-apc-lab/croupier

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 51 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

Annexes

Appendix 1: Jenkins Pipeline Definition

#!/usr/bin/groovy

pipeline {

 agent {label 'master'}

 options {

 disableConcurrentBuilds()

 }

 environment {

 PYTHONPATH = "${WORKSPACE}/"

 }

 stages {

 stage("Integration - Install") {

 steps { integration() }

 }

 stage("Integration - Test") {

 steps { runUAT("sophora-103.man.poznan.pl", "https") }

 }

 stage("Approve for Production") {

 steps { approve() }

 }

 stage("Deployment - Install") {

 steps { deploy() }

 }

 stage("Deployment - Test") {

 steps { runUAT("cloudify.hidalgo-project.eu", "https") }

 }

 }

}

def integration() {

 sh "ansible-playbook -i Jenkins/Inventory/cloudify_integration.INI

./cloudify-integration.yml --vault-password-

file=~/HiDALGO/VaultPassword/cloudify_vault.txt"

}

def deploy() {

 sh "ansible-playbook -i Jenkins/Inventory/cloudify.INI ./cloudify-

deployment.yml --vault-password-

file=~/HiDALGO/VaultPassword/cloudify_vault.txt"

}

def approve() {

 try {

 timeout(time:1, unit:'DAYS') {

 input('Do you want to deploy to live?')

 }

 } catch(err) {

 def user = err.getCauses()[0].getUser()

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 52 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

 if('SYSTEM' == user.toString()) { // SYSTEM means timeout.

 didTimeout = true

 } else {

 userInput = false

 echo "Aborted by: [${user}]"

 }

 }

}

def runUAT(hostname, protocol) {

 sh "Tests/ping_cloudify.sh ${hostname} ${protocol}"

}

Appendix 2: Cloudify Unit Test & Code Coverage

-------- coverage: platform linux2, python 2.7.15-candidate-1 ------

--

Name Stmts

Miss Cover Missing

--

croupier_plugin/__init__ 0

0 100%

croupier_plugin/external_repositories/__init__ 0

0 100%

croupier_plugin/external_repositories/ckan 15

15 0% 28-56

croupier_plugin/external_repositories/external_repository 20

20 0% 28-76

croupier_plugin/job_requester 49

49 0% 28-126

croupier_plugin/ssh 173

142 18% 43-44, 62-125, 129, 133, 137-140, 155-173, 184-267,

272-275, 282-294, 297, 300, 314-361, 366, 371-373

croupier_plugin/tasks 299

299 0% 28-653

croupier_plugin/tests/__init__ 0

0 100%

croupier_plugin/tests/slurm_tests 70

1 99% 258

croupier_plugin/tests/spark_tests 108

1 99% 224

croupier_plugin/tests/torque_tests 89

9 90% 176-185, 193-200, 215, 269

croupier_plugin/tests/workflow_tests 91

67 26% 46, 55-56, 74-87, 105-118, 136-149, 167-180, 198-211,

230-243, 275-288, 320-333, 416-429, 433

croupier_plugin/utilities 4

0 100%

croupier_plugin/workflows 254

254 0% 27-452

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 53 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

croupier_plugin/workload_managers/__init__ 0

0 100%

croupier_plugin/workload_managers/bash 54

54 0% 28-119

croupier_plugin/workload_managers/slurm 118

43 64% 39-79, 118-135, 153, 225-242, 252

croupier_plugin/workload_managers/spark 151

43 72% 78-104, 121, 145, 182, 190-227, 272, 279, 281

croupier_plugin/workload_managers/torque 170

97 43% 38-99, 137, 150, 153, 157, 162, 166, 214, 237-271, 277-

280, 284-298, 302-342

croupier_plugin/workload_managers/workload_manager 145

82 43% 118, 138, 152-153, 158, 188-281, 304-311, 334-348, 353-

367, 384, 404, 422, 437, 449-468, 476, 485-492

--

TOTAL 1810

1176 35%

--

--

Ran 49 tests in 10.752s

Appendix 3: Blueprint Example

This Blueprint describes four jobs that should run in an HPC node, either directly in hardware
or using Singularity. It also shows that there may be dependencies between jobs, so the
Orchestrator will understand how to carry out the execution.

first_job:

 type: croupier.nodes.Job

 properties:

 job_options:

 partition: { get_input: partition_name }

 commands: ["touch fourth_example_1.test"]

 nodes: 1

 tasks: 1

 tasks_per_node: 1

 max_time: "00:01:00"

 skip_cleanup: True

 relationships:

 - type: job_managed_by_interface

 target: hpc_interface

second_parallel_job:

 type: croupier.nodes.Job

 properties:

 job_options:

 partition: { get_input: partition_name }

 commands: ["touch fourth_example_2.test"]

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 54 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

 nodes: 1

 tasks: 1

 tasks_per_node: 1

 max_time: "00:01:00"

 skip_cleanup: True

 relationships:

 - type: job_managed_by_interface

 target: hpc_interface

 - type: job_depends_on

 target: first_job

third_parallel_job:

 type: croupier.nodes.Job

 properties:

 job_options:

 script: "touch.script"

 arguments:

 - "fourth_example_3.test"

 nodes: 1

 tasks: 1

 tasks_per_node: 1

 max_time: "00:01:00"

 partition: { get_input: partition_name }

 deployment:

 bootstrap: "scripts/create_script.sh"

 revert: "scripts/delete_script.sh"

 inputs:

 - "script_"

 skip_cleanup: True

 relationships:

 - type: job_managed_by_interface

 target: hpc_interface

 - type: job_depends_on

 target: first_job

fourth_job:

 type: croupier.nodes.Job

 properties:

 job_options:

 script: "touch.script"

 arguments:

 - "fourth_example_4.test"

 nodes: 1

 tasks: 1

 tasks_per_node: 1

 max_time: "00:01:00"

 partition: { get_input: partition_name }

 deployment:

 bootstrap: "scripts/create_script.sh"

 revert: "scripts/delete_script.sh"

 inputs:

 - "script_"

 skip_cleanup: True

Document name: D5.3 First HIDALGO Portal Release and System Operation

Report
Page: 55 of 55

Reference: D5.3 Dissemination: PU Version: 1.0 Status: Final

 relationships:

 - type: job_managed_by_interface

 target: hpc_interface

 - type: job_depends_on

 target: second_parallel_job

 - type: job_depends_on

 target: third_parallel_job

