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Executive Summary 

Deliverable D3.1 defines the HiDALGO benchmarking methodology with a focus on the 

HiDALGO HPC infrastructure. HiDALGO’s target is the definition of a generic, systematic, 

reproducible, and interpretable methodology for collecting benchmarking information from 

the HiDALGO applications, and a systematic way of storing benchmarking results. To achieve 

that, this deliverable study the existing HiDALGO infrastructure, surveys available tools, and 

draws from best practices for HPC systems and applications. It also presents the preliminary 

effort to apply this methodology on the HiDALGO pilot applications. 

The HiDALGO methodology has been fully applied on the Migration pilot. Similar efforts have 

been kick-started for benchmarking the Air Pollution and Social Networks pilots as well. This 

initial experimentation and benchmarking have helped identify various major and minor 

issues in procuring and/or benchmarking the HiDALGO pilots, and has significantly impacted 

the definition of the HiDALGO methodology.  
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1 Introduction 

1.1 Purpose of the document 

Deliverable 3.1 is prepared in the context of WP 3, which aims to identify the issues that 

prevent software that deals with Global Challenges from achieving the highest possible 

computation performance (exactable performance), as well as efficient and agile data 

manipulation. This deliverable contributes to developing a benchmarking methodology to 

assess the quality and performance of applications and obtaining detailed information on their 

scalability behaviour and performance bottlenecks. This way, this deliverable contributes to 

the project’s goals towards excellence in application design and optimization. 

1.2 Relation to other project work  

Deliverable 3.1 summarises initial findings regarding the performance and scalability of 

HiDALGO applications, as these are described in Deliverable 4.1 (Initial Status of the Pilot 

Applications), on the project’s HPC infrastructure, as described in Deliverable 5.1 (HiDALGO 

System Environment). It drives future activities within WP 3 (Benchmarking and Co-design, 

Scalability, Coupling) and within WP 4 (Implementation of the Pilot applications). It is the first 

of a series of reports focusing on the benchmarking, implementation, optimisation, and 

coupling technologies (D3.3, D3.4, and D3.5). 

1.3 Structure of the document 

The document is structured into 3 major chapters.  

Chapter 2 presents the HiDALGO Benchmarking methodology. It describes existing 

infrastructure, lists available tools for performance analysis, sets the aims and goals of the 

benchmarking methodology and provides a description of the workflow for benchmarking 

HiDALGO applications. 

Chapter 3 presents the current status of deploying the HiDALGO Pilot applications on the 

project’s HPC infrastructure together with initial findings on their scalability and profiling 

results.  

Chapter 4 concludes the document summarising key findings for each application and lessons 

learned from this first initial effort towards setting up and implementing the HiDALGO 

benchmarking methodology. Finally, it sets the next goals for benchmarking within HiDALGO.  
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2 HiDALGO Benchmarking 

2.1 HiDALGO HPC/HPDA infrastructure 

This section describes the infrastructure used for benchmarking in the context of this 

deliverable. A more detailed description of the existing HiDALGO infrastructure can be found 

in Deliverable 5.1 of WP 5. As the activities of Task 3.1 continue, benchmarking will be 

extended to any infrastructure that will be made available to the project in the future. 

2.1.1 USTUTT infrastructure 

For Deliverable 3.1, we have utilized the Cray XC-40 Hazelhen, the flagship system at HLRS. 

The system is a homogeneous supercomputer, built upon Intel Haswell Processors, 

interconnected via the proprietary Cray Aries network in the dragonfly topology. Each node 

consists of two 24-core processors and 128 GB of memory. The system ranks 20th on the 

Top500 list and provides a peak performance of 7.4 PFlop/s. More information can be found 

in Deliverable 5.1.  

2.1.2 PSNC infrastructure 

For Deliverable 3.1, we have utilized the CPU partition of Eagle, the supercomputer at PSNC, 

which is based on Intel Haswell processors. Each node consists of two CPUs of 14 or 16 cores 

each, with the memory per node varying between 64 GB and 256 GB. The nodes in Eagle are 

interconnected with InfiniBand FDR. More information can be found in Deliverable 5.1. 

2.1.3 ECMWF infrastructure 

ECMWF will not provide direct access to its HPC facilities in the context of HiDALGO. Instead, 

ECMWF is developing cloud environments co-hosted to the HPC, which will offer very fast and 

easy access to HPC resources, such as disks. The description of ECMWF infrastructure and 

weather forecast model used for benchmarking can be found in Deliverable 5.1. 
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2.2 HiDALGO application analysis tools 

2.2.1 HiDALGO application analysis targets 

The two systems described in Section 2.1, i.e. Hazelhen and Eagle, facilitate the performance 

analysis of running applications with a wide set of tools. We summarise the list of pre-installed 

tools in Table 2.1. Some of the tools are available on both HLRS and PSNC infrastructures, 

some come with a particular license and are installed on one of the two systems, while others 

are specific to the underlying architecture and are only available on the respective system.  

Within HiDALGO we rely on tools that are readily available to each user or can be easily 

installed by a user, to collect profiles and/or traces, which can then be analysed with various 

tools that visualize profiles and traces. Our benchmarking process uses both profiles and 

traces, the former collected through sampling and the latter collected through tracing. 

Sampling collects data from the program counter at specific time intervals [10] to check how 

much time was spent on a particular function [12][10]. Tracing collects performance data 

during a particular event such as a function call [10]. However, the user needs to specify which 

function to trace [12]. Tracing is usually a heavy process when the application is running for a 

long time on large number of cores. On the other hand, sampling is mostly used to get an 

initial overview of the work distribution [10].  

To successfully achieve the project’s objectives, HiDALGO tools must be carefully selected 

considering the following: 

1. HiDALGO needs tools for profiling applications written in languages which are 

emerging in the HPC community, including Python.  

2. Portability of benchmarking and profiling tools across various architectures as well as 

the usability of collected profiles and traces are of utmost importance.  

Therefore, although we do make use of the pre-installed tools, we focus on tools that are 

widely-available, supported by multiple architectures and vendors, maintained and up-to-

date, which provide information about the performance of applications that can be easily 

interpreted and re-used in the future not only by the project but also by the HPC and HPDA 

communities. We note that, although some tools are pre-installed on one or all HiDALGO 

systems, we may rely on different versions of the tools for the analysis performed in this 

deliverable.   

 

Name Hazelhen Eagle Scope 

PAPI Yes No Hardware counters measurement 

Score-P Yes No Profiling and trace recording 

Intel Advisor Yes Yes Design and optimization  
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Table 2.1: Pre-installed performance analysis tools on Hazelhen and Eagle 

2.2.2 Description of pre-installed application analysis tools 

PAPI 

PAPI aims to provide the tool designer and application engineer with a consistent interface 

and methodology for use of the performance counter hardware found in most major 

microprocessors. It enables software engineers to see the relation between software 

performance and processor events in near real time [6].   

➢ Link: http://icl.cs.utk.edu/papi/index.html 

Score-P 

Score-P is a software system that provides a measurement infrastructure for profiling, event 

trace recording, and online analysis of HPC applications. Score-P supports multiple 

programming paradigms, i.e., MPI, SHMEM, OpenMP, Pthreads, CUDA, OpenCL and OpenAcc. 

The call-path profiles obtained with Score-P can be subsequently analysed with tools like CUBE 

and TAU, while the traces, which follow the OTF2 format, can be analysed with Vampir and 

Scalasca. In addition, Score-P supports recording hardware events, interfacing with common 

tools like PAPI and PERF. While other tools are also suitable for collecting application profiles 

and/or traces, e.g. Extrae, Score-P offers bindings for multiple languages, including Python, 

with additional plugins (https://github.com/score-p). For the purposes of this deliverable, we 

use Score-P v4.1, as it allows for Python bindings. Although local installation is simple, we will 

opt for global installation on HiDALGO infrastructure in the future.  

➢ Link: http://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-4.1/html/  

(instructions for using Score-P with C/C++ applications) 

➢ Link: https://github.com/score-p/scorep_binding_python  

(instructions for using Score-P with Python applications)  

Intel Advisor 

Intel Advisor is a threading assistant for C, C++, C# and Fortran. It guides developers through 

threading design, automating analyses required for fast and correct implementation. It helps 

developers to add parallelism to their existing C/C++ or Fortran programs [4].  

Vampir Yes Yes Trace visualization and analysis 

Intel Inspector Yes Yes Performance optimization  

CrayPAT Yes No Performance analysis 

Intel VTune Yes Yes Performance analysis 

Extrae Yes No Trace recording 

Cube Yes No Profile visualization 

Paraver Yes Yes Trace visualization 

http://icl.cs.utk.edu/papi/index.html
https://github.com/score-p)
http://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-4.1/html/
https://github.com/score-p/scorep_binding_python


 

 
Document name: D3.1 Report on Benchmarking and Optimisation Page:   13 of 37 

Reference: D3.1 Dissemination:  PU Version: 1.0 Status: Final 

 

➢ Link: https://software.intel.com/en-us/advisor 

Vampir 

The Vampir suite of tools offers scalable event analysis through a GUI which enables a fast and 

interactive rendering of very complex performance data. The suite consists of VampirTrace, 

Vampir and VampirServer. Ultra large data volumes can be analysed with a parallel version of 

VampirServer, loading and analysing the data on the compute nodes with the GUI of Vampir 

attached to it. Vampir is based on standard QT and works on desktop Unix workstations as 

well as on parallel production systems [8]. 

Vampir consists of a GUI interface and an analysis backend as shown in Figure 2.1. In order to 

use Vampir, you first need to generate a trace of the application, preferably 

using VampirTrace. The generated Open Trace Format (OTF) trace consists of a file for each 

MPI process (*.events.z), a trace definition file (*.def.z) and the master trace file (*.otf) 

describing the other files [8]. 

 
Figure 2.1: Vampir GUI [8] 

Using Vampire 

To analyse small traces (< 500 MB of trace data), Vampir can be used standalone with the 

default backend: 

vampire 

Using VampireServer 

For large-scale traces (> 500MB and up to many thousand MPI processes), the parallel 

VampirServer backend should be used (on compute nodes allocated through the queuing 

system). The user can then attach to it using vampir: 

https://software.intel.com/en-us/advisor
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vampirserver start -n $((16*8 - 1)) 

On a new shell window, login to one of the login nodes of the system and open vampire: 

vampire 

Then, as shown in Figure 2.1, select “Remote open" and enter the host and port of the 
VampirServer. Proceed and select the trace you want to open. 

➢ Link: https://vampir.eu/  

Intel Inspector 

Intel Inspector is able to determine errors related to threading and memory early in the 

development cycle to deliver reliable applications. It is a memory error and thread checker 

tool for C, C++, C# .NET, and Fortran developers designing serial and parallel applications [5]. 

It performs dynamic analysis detecting intermittent and non-deterministic errors on varying 

degrees of analysis. The tool detects memory leaks and problems and locates them. In terms 

of threading analysis, it detects and locates deadlocks and data races. 

Intel Inspector has two interfaces available: graphical and command line. To use Intel 

Inspector, the code must be compiled with -g option to get debug information and preferably 

with -O0 to ensure the debug information accurately reflects the source code location.  

➢ Link: https://software.intel.com/en-us/intel-inspector  

➢ Tutorial: https://software.intel.com/en-us/inspector-tutorial-windows-memory-cplusplus  

CrayPAT 

CrayPAT, offered by Cray, is a performance analysis tool for XC platforms [1]. It supports 

Fortran, C, C++, UPC, OpenMP, Pthreads and SHMEM [12]. The CrayPAT tool set contains a 

simplified and easy-to-use version of Perftools-lite which provides automated performance 

analysis information [1]. CrayPAT supports two mechanisms to collect or measure 

performance data, sampling and tracing. 

Using CrayPAT 

To use CrayPAT for automatic performance analysis, first a .apa file needs to be generated 

using the commands below. 

After building the application, the following command instruments the application: 

pat_build –O apa a.out 

The result of the above command will be an instrumented program file a.out+pat. 

Now use the following command to run the application to get top time-consuming routines, 

using sampling: 

aprun ... a.out+pat  

Running the +pat binary creates a .xf data file or a directory containing multiple .xf files. To 

generate a single *.ap2 file, containing all performance data, use pat_report to combine 

information from *.xf output. 

https://vampir.eu/
https://software.intel.com/en-us/intel-inspector
https://software.intel.com/en-us/inspector-tutorial-windows-memory-cplusplus
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Intel VTune 

Intel VTune Amplifier XE for Linux allows to analyse algorithm choices, identify serial and 

parallel code bottlenecks, and understand how to better utilize available hardware resources 

and thus speed up the application execution. Moreover, it reveals where the application is 

spending time, identifies the most time-consuming program units (hotspots), and detects 

hardware usage bottlenecks for a sample application. The profiler has a GUI interface which 

presents analysis findings in a synthetized way what simplifies interpretation.  

➢ Link: https://software.intel.com/en-us/vtune  

Extrae 

The Extrae library allows MPI communication events of a parallel program to be recorded as 

a trace file [2]. Extrae can be configured through an XML file. To set up the environment for 

the run use the following command: 

export LD_PRELOAD=$EXTRAE_HOME/lib/libmpitrace.so  

export EXTRAE_CONFIG_FILE=extrae.xml 

And finally run the application as usual [2]. 

➢ Link: https://tools.bsc.es/extrae  

Cube 

Cube is used as performance report explorer for Scalasca and Score-P. It is a generic tool for 

displaying a multi-dimensional performance space consisting of dimensions such as 

performance metric, call path, and system resource [11]. 

➢ Link: http://scalasca.org/software/cube-4.x/documentation.html  

Paraver 

Based on an easy-to-use Motif GUI, Paraver was developed to respond to the need to have a 

qualitative global perception of the application behaviour by visual inspection and then to be 

able to focus on the detailed quantitative analysis of the problems. Paraver is able to perform 

concurrent comparative analysis of several traces and provides a large amount of information 

useful to improve the decisions on whether and where to invest the programming effort to 

optimize an application [7].  

Customizable semantics of the visualized information facilitates extending the tool to support 

new performance data or new programming models, while sharing views of the trace file 

enables cooperative work. Another degree of freedom is the building of derived metrics which 

are not hardwired on the tool but programmed. The tool offers a large set of time functions, 

a filter module and a mechanism to combine two time lines. 

➢ Link: https://tools.bsc.es/paraver  

➢ GitHub: https://github.com/bsc-performance-tools/wxparaver  

https://software.intel.com/en-us/vtune
https://tools.bsc.es/extrae
http://scalasca.org/software/cube-4.x/documentation.html
https://tools.bsc.es/paraver
https://github.com/bsc-performance-tools/wxparaver
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2.2.3 HiDALGO storage infrastructure and tools 

In order to establish collaborative work on the project sources, HLRS provide access to the 

installation of the FusionForge at https://projects.hlrs.de. FusionForge is a web-based 

project management and collaboration environment, which includes services for project 

hosting, version control (Subversion, Git, etc.), code reviews, ticketing (issues, support), 

release management, continuous integration, and messaging.  

In order to use personal Fusion Forge services, the user should login to 

https://projects.hlrs.de and select the tab "My Page". In particular, this tab contains subtabs 

"Personal page", "Account", and "Register Project". Subtab "Register 

Project" allows to request for new project repository. While registering the new repository, 

the user must specify project full name, project purpose and summary, project public 

description, and preferable source control manager (SCM). The user can select between Git, 

Subversion, Mercurial, or datastore without SCM. Subtab "Account" serves for 

managing user account (change password, set up language, timezone, theme, country, email 

address, etc.). Subtab "Personal page" usually contains general information about projects 

where the user participates in. Its appearance can be easily tuned by adding widgets and 

customizing layouts. From this subtab, the user can get access to the project pages.  

Each project pages contains tabs "Summary", "Admin" (if the user has admin permissions for 

the project), "SCM" and others. Tab "SCM" assembles information about project repository: 

path for cloning, aggregate data about repository history, a web interface for manipulating 

the repository (e.g., gate), etc. Tab "Summary" holds project-related widgets that can be 

selected by user. The default set of widgets includes project description, references to the 

latest file releases, quick access to public services of the project (Home Page, Project Files, 

Mailing Lists, Surveys, SCM repository), and list of project members. Users with administrative 

rights have access to "Admin" tab. This tab allows to update project information, update 

project users (add/remove users, change their roles, etc.), view basic project statistics (e.g., 

see screenshot Fig. 1 with the bar plot of commits history).  

In the context of HiDALGO WP 3, we intend to create hidalgo-wp3 project with Git 

repository that stores relevant information about code optimization and benchmarking. It can 

be further cloned with:  

git clone https://scm.projects.hlrs.de/authscm/sgogolenko/git/hidalgo-wp3/hidalgo-wp3.git 

Pushing new commits to this repository usually consists of the following steps:  

git commit -m"[commit-tag] Commit short description" 

git pull --rebase 

git push 

https://projects.hlrs.de/
https://projects.hlrs.de/
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2.3 The HiDALGO benchmarking process 

2.3.1 Repository structure 

As it is important to track changes in the status of applications and correlate collected 

measurements with scalability results, HiDALGO has defined the following structure for the 

shared repository:  

➢ Each application has its own directory in the hidalgo-wp3 project repository 

(/RefugeeMigration, /UrbanPollution, /SocialMedia). 

➢ For each application, a subdirectory is created for each different system (e.g. 

/RefugeeMigration/Hazelhen_HLRS, /RefugeeMigration/Eagle_PSNC) 

➢ Separate directories are created to denote different configurations in terms of compiler 

versions, library versions, etc. For example, if an application is benchmarked with two 

different MPI versions on the same system, then two different directories are created. 

We use incremental numbering for different configurations (e.g. 

/RefugeeMigration/Hazelhen_HLRS/conf00, 

/RefugeeMigration/Hazelhen_HLRS/conf01).  

Each of these directories stores the following: 

▪ A conf.yaml file which effectively describes the system configuration. It lists the 

versions of used compilers and libraries, as well as any other configuration options, 

e.g. runtime parameters for a library. 

▪ A set of files listing the parameters together with their values used for the different 

executions of the application. The files are named param_N.yaml, where N denotes 

the N-th execution of the application. 

▪ Sets of measurements for the whole application or for one of its components using 

the CSV format (.csv files). The name of each CSV file follows a specific convention 

for each component of each application. Specifically, it must include the application 

name, the component name, the name of the xml file that contains the configuration 

parameters for the application and/or the specific component, and a timestamp.   

e.g. AppName-AppComponent-param_N-YYMMDD_hhmm.csv 

▪ Sets of profiling results for the whole application or one of its components. Each set 

is stored in a timestamped subdirectory using the naming convention profiling-

YYMMDD_hhmm. 

Each of these subdirectories contains: 

➢ A file holding the configuration parameters used for the profiling of the specific 

component or the application, named AppName-AppComponent-

param.yaml.  
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➢ One or more directories with profiles or traces for the application or the 

particular component, for a number of nodes, cores, and processes per node. 

The name of each one of these directories follows a specific convention. In 

particular, it starts with a prefix (profile- for profiles or trace- for traces), 

which is then followed by the execution configuration. For example, for a trace 

collected on n nodes, c cores per node, p MPI processes and d threads per 

process, the name of the directory would be: trace-n_nodes-c_cores-

p_procs-d_threads. 

Figure 2.2 illustrates the HiDALGO benchmarking repository structure, showcasing the 

directories and files stored for executing and profiling the Flee component of the Migration 

pilot at Hazelhen. 

 
Figure 2.2 HiDALGO benchmarking repository structure 

2.3.2 Reporting guidelines 

Each major software component of an application benchmarked and profiled by HiDALGO, is 

expected to be able to report its own timing results and any other metrics specific to the 

application, both for the component as a whole and for critical kernels or phases within the 

component (e.g. startup/initialisation phase, iterative phases, etc.). All the results (time and 

other metrics) are reported in a CSV file.  

To facilitate the storing, tracking and analysis of results, HiDALGO has defined a specific 

structure that must be followed by each CSV results file. Specifically, each file is structured as 

follows: 

➢ The first column(s) specify the problem size and/or instantiation parameters of the 

problem.  

➢ The next three columns refer to the number of nodes (“Nodes”), number of cores per 

node (“Cores/Node”), number of MPI processes used (“MPI_Procs”). If the 

HiDALGO/

RefugeeMigration/

Hazelhen_HLRS/

conf00/

RefugeeMigration-Flee-
param_1-20190319_1720.csv

RefugeeMigration-Flee-
param_1-20190320_0930.csv

conf.yaml param_1.yaml profiling_20190320-1000/

RefugeeMigration-Flee-
param.yaml

profile-1_nodes-
24_cores-24_procs.cubex

trace-1_nodes-24_cores-
24-procs/

Eagle_PSNC/

AirPollution/ SocialMedia/
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component is parallelized using hybrid MPI+OpenMP, they are followed by a fourth 

column that refers to the number of threads per MPI process (“Threads”).  

➢ A set of columns for each phase of the component we need to collect measurements 

for. The columns are named following a specific convention. In particular, their names 

start with a prefix, which is the name of the phase (custom to the application 

component), followed by the name of the metric. For example, for phase “PhaseX” of a 

component, the following columns are created: “PhaseX_iterations”, 

“PhaseX_time”, “PhaseX_metric1”, “PhaseX_metric2”, etc. These columns 

denote the number of iterations for the particular phase, its execution time, and any 

other metrics collected for this particular phase.  

➢ The last columns include the total execution time of the component and aggregate 

metrics. These columns are named using the prefix “Total_”.   

The proposed template for reporting is easily extensible with additional application phases 

and metrics. In case of variability in runtimes or other metrics between multiple runs, the 

template can be extended with a column denoting the number of runs (“Runs”), while, for 

each metric measurement, the mean observed value and its confidence interval is reported 

instead. For example, instead of a single column named “PhaseX_time”, we use multiple 

columns named “PhaseX_time_mean”, “PhaseX_time_CI-cl”, where cl is the 

confidence level for the confidence interval. 

Figure 2.3 showcases the CSV file that stores the results for the Validation module of the Social 

Networks pilot. For a specific problem size, the application has been executed 4 times, each 

one using a different configuration, i.e. different nodes, cores, MPI processes and threads. The 

Validation module has 3 different phases, namely Metis, Analysis and Factorization. For each 

phase the CSV file holds its iterations and the time it took to be executed. Finally, the CSV file 

reports the total execution time of each run. 
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Figure 2.3 : Example of a CSV file 
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2.3.3 Profiling guidelines 

In order to define a uniform methodology for profiling applications in the context of HiDALGO, 

we rely on Score-P.  

More specifically, to profile HPC components of applications, we use Score-P to collect either 

application profiles or application traces. The collected results are stored in the repository as 

described in Sections 2.3.1 and 2.3.2. Score-P profiles and traces can then be analysed with 

different tools. More importantly, Score-P allows us to collect any required information of an 

application in the same format, which can later be re-used or compared across systems and/or 

applications. Score-P collects timing measurements and call trees for parallel applications at 

profiling mode, while it captures all application events when in tracing mode.  

Score-P primarily targets MPI. It can profile or record events for a full application, but also 

allows for instrumentation and measurement of specific parts of the code. Its interface with 

PAPI and/or perf allows also for collection of performance counters measurements for a 

specific phase of an application. Finally, it also allows for memory recording and I/O recording.  
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3 Initial Benchmarking Findings 

3.1 HiDALGO HPC/HPDA infrastructure 

As a reference point for the HiDALGO HPC infrastructure (Hazelhen and Eagle), Deliverable 

D3.1 reports the benchmarking results for the HPL and HPCG benchmarks, both on full systems 

and on single nodes.  

These two benchmarks act as indicators of diverse performance properties. The HPL 

benchmark, having O(n) operational intensity, indicates the peak performance of a system in 

heavily computationally-intensive applications. On the other hand, the HPCG benchmark, 

having O(1) operational intensity, namely a very low flop-per-byte ration, indicates the 

performance of a system when the memory subsystem is stressed. In addition, the HPCG 

benchmark exhibits complex communication patterns and thus is capable of exposing 

performance bugs in common communication operations at large scale.  

Regarding ECMWF infrastructure, which as explained in Section 2.1.3 has a different operation 

than other two supercomputing centres, Deliverable D3.1 reports I/O performance results 

specific to the high-resolution weather forecast (HRES) and the ensemble of 15-day forecasts 

(ENS). 

3.1.1 USTUTT Benchmarking results 

Table 3.1 presents HPL and HPCG reference results on Hazelhen, on single node and on the 

full system. HPL results show the peak node and system performance, while HPCG results 

show the system performance under a memory-bound workload with significantly higher 

communication overheads. On a single node, HPCG achieves about 17% of the HPL 

performance, and about 14% in parallel efficiency on the full system. 

Benchmark Problem size Nodes Cores/Node 
MPI processes/ 

Node 
Memory/ 

Node 
Performance 

HPL 20000 1 24 (2x12) 1 128GB 777.233 GFlop/s 

HPCG Global: 192x192x192 
Local:  192x192x192 

1 24 (2x12) 1 128GB 131.322GFlop/s 

HPL 4973760 7712 24 (2x12) 2 128GB 5640.2TFlop/s 

HPCG Global: 3072 x 5952 x 5952 

Local: 192 x 192 x 192 
7688 24 (2x12) 2 128GB 138 TFlop/s 

Table 3.1: HPL and HPCG reference performance results for Hazelhen (HLRS) 

3.1.2 PSNC Benchmarking results 

Table 3.2 presents HPL and HPCG reference results on Eagle, on a single node and on the full 

system. For Eagle, HPL performance is slightly higher on a single node compared to Hazelhen, 
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due to the 4 additional cores per node. HPCG achieves about 5% of the HPL performance, 

indicating that a node on Eagle is more sensitive to the performance of memory-bound 

workloads compared to a node in Hazelhen. The exact problem size for HPCG could not be 

verified for Eagle, so we cannot make any assumptions about the scalability of the 

interconnection network at this time.   

Benchmark Problem size Nodes Cores/Node 
MPI processes/ 

Node 
Memory/ 

Node 
Performance 

HPL 120960 1 28 (2x24) 28 128GB 894.7 GFlop/s 

HPCG Local: 16x16x16  1 28 (2x24) 28 128GB 44.4102GFlop/s 

HPL 2739840 1233 32984 2 64GB/128GB/256GB 1013.72TFlop/s 

HPCG unknown 1233 32984 2 64GB/128GB/256GB 8.53 TFLop/s 

Table 3.2: HPL and HPCG reference performance results for Eagle (PSNC) 

3.1.3 ECMWF Benchmarking results 

The ECMWF model produces raw model output for global fields in the spectral space 

(spherical harmonic fields) and physical space (reduced Gaussian grid, reduced lat/lon). These 

fields still need further post-processing to create user-specific weather products. Member 

states and clients very often require specific tailored products, e.g. temperature in the whole 

country of Hungary or precipitation on a coarse lat-lon grid. Product Generation application 

applies users’ requirements to raw model output to get user data fields, called products. 
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 summarizes the reference performance results from production runs on the ECMWF 

infrastructure. The HRES column refers to the high-resolution forecast and the ENS column 

refers to the ensemble of forecasts.  
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Metrics HRES ENS 

Total 

Number of fields read 1,532,803 24,552,389 

Number of products written 22,875,147 114,909,155 

Writing volume 14.11 TB 11.13 TB 

Writing rate 648.6 MB/s 393.4 MB/s 

Main model run 

Number of fields read 488,336 9,432,089 

Number of products written  11,614,366 65,343,476 

Writing volume 9.05 TB 9.15 TB 

Writing rate 625.0 MB/s 506.0 MB/s 

Boundary-conditions run 

Number of fields read 1,044,467 15,120,300 

Number of products written 11,260,781 49,565,679 

Writing volume 5.06 TB 1.98 TB 

Writing rate 672.2 MB/s 280.7 MB/s 

Table 3.3: Reference performance results for ECMWF infrastructure 

3.2 HiDALGO Pilots 

3.2.1 Migration Pilot 

3.2.1.1 Current status of the workflow 

A detailed description of the Migration pilot workflow can be found in Deliverable 4.1. Its core 

component is the Flee simulation framework. Flee is an agent-based modelling framework 

that simulates the movement of individuals across geographical locations. The code is written 

in Python and parallelized with MPI, using the py4mpi module [9]. A public release of the code 

is available on github1.  

For this deliverable, we benchmark the parallel version of the code using sample input data, 

which contain 2 conflict zones, 2 towns and 3 camps. The simulation starts with a configurable 

number of initial agents/refugees per campus. As the simulation progresses in time (also 

                                                      
1 https://github.com/djgroen/flee-release 

https://github.com/djgroen/flee-release
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configurable number of time steps), at every time step, new conflict zones and closures are 

introduced and refugee movements are simulated accordingly on the network graph. In 

addition, the test inserts an additional 1000 agents per time step. This particular execution 

scenario is not I/O-intensive, as conflict and refugee data is loaded in advance of the main 

simulation. 

3.2.1.2 Preliminary benchmarking findings 

We present scalability results for the parallel test on both Hazelhen and Eagle, for up to 4 

compute nodes, scaling up the number of MPI processes. We use 120-time steps for the 

simulation and we run tests with 300K agents (100K agents per campus) and 900K agents 

(300K agents per campus). The execution time is measured using the GNU time command 

and refers to the full simulation, including starting up the MPI processes and the initialization 

of the agents. We did not scale the application on more nodes, since our preliminary results, 

shown below, already result in low execution times for the selected parallel test and suffice 

to expose the scalability behaviour of the application. 

Figure 3.1 (both axes in logarithmic scale) and Figure 3.2 show the results of scaling Flee on 

Hazelhen for up to 4 nodes (96 cores).  Flee scales up well within a single node (up to 24 cores) 

for both problem sizes; however, its parallel efficiency is reduced when scaled to more nodes. 

In particular, the achieved efficiency is 64% for 24 cores (single node) for the larger problem 

size (900K agents), while being only 39% for 96 cores (4 nodes). For the smaller problem size, 

efficiency is consistently lower across all core counts.   

 
Figure 3.1: Scaling Flee on Hazelhen (HLRS) – Execution time 
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Figure 3.2: Scaling Flee on Hazelhen (HLRS) – Efficiency 

Similar behaviour is observed on Eagle, as illustrated by Figure 3.3 (both axes in logarithmic 

scale) and Figure 3.4¡Error! No se encuentra el origen de la referencia.. For a single node (28 

cores), parallel efficiency for the larger problem size is 67%, while dropping to 28% for 4 nodes 

(112 cores). What is noteworthy is that on Eagle, parallel efficiency is almost equal for the two 

different problem sizes for up to 24 cores. In addition, on Hazelhen, there appears to be an 

increasing difference in parallel efficiency between the two problem sizes, while on Eagle, the 

difference seems to remain almost constant as the core count increases. Those differences 

can be further investigated through profiling of the application. 

 
Figure 3.3: Scaling Flee on Eagle (PSNC) - Execution time 
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3.2.1.3 Profiling findings 

In order to further understand the scalability problems of Flee, we have profiled the parallel 

test for 300K agents on both systems, using Score-P to collect both a profile and a trace of the 

application. We use Cube to visualise and analyse application profiles and Vampir to visualise 

and analyse the OTF2 traces. We have collected traces for 1 process, half a node (12 cores on 

Hazelhen, 14 cores on Eagle), full node (24 cores on Hazelhen, 28 cores on Eagle) and 2 nodes. 

By analysing the profile for a single process on Hazelhen using Cube (Figure 3.5), we have 

identified that Flee in this execution scenario calls the MPI_Allreduce functions an 

excessive amount of times, i.e. almost 6000 times. This is actually due to the parallelization of 

the application: a call to MPI_Allreduce is performed at every time step, for each location 

and link in the simulation, in order for all processes to have a global view of the number of 

simulated agents at any time. As for larger location graphs, this may result in an excessive 

number of calls, a more efficient rearrangement of data, combined with merging these calls, 

could result in improved performance.  
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Figure 3.5: Call tree (number of calls) of Flee with 1 MPI process on Hazelhen using Cube. 

As MPI_Allreduce is an intensive all-to-all communication function, we expect it to be a 

major bottleneck for scaling Flee on high numbers of nodes. A further analysis of the traces of 

the application on Hazelhen using Vampir is shown in Figure 3.6, which visualizes the 

accumulated exclusive time per function. The traces show that MPI_Allreduce becomes the 

third most time-consuming function when already filling a single node on Hazelhen.  

The two most time-consuming functions, namely flee:pflee:evolve and 

flee:flee:selectRoute scale linearly up to 48 cores (the accumulated exclusive time 

remains constant). On the contrary, the time consumed in the MPI_Allreduce function 

grows significantly even within a single node, thus impeding the scalability of the application. 

Another interesting finding is that the function flee:flee:pick_conflict_location 

does not scale linearly, becoming the fourth most time-consuming function when utilizing 48 

cores.   
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Figure 3.6: Flee trace analysis with Vampir on Hazelhen, for 12, 24, 48 cores (left to right). 

  
Figure 3.7: Flee trace analysis with Vampir on Eagle, for 14, 28, 56 cores (left to right).  
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Our analysis of traces on Eagle reveals a similar behaviour. Regarding the computational parts, 

this is expected, as the two systems utilise similar types of compute nodes.  However, both 

the interconnection network and the MPI version used are different, affecting the 

communication parts of the application. As shown in Figure 3.7, MPI_Allreduce consumes 

a significant amount of time even for 14 processes on a single node of Eagle, and it does not 

scale at all outside of a single node, as indicated by the increase in time from 28 to 56 cores. 

This is an important point of comparison between the two systems: on Hazelhen, using the 

Cray-MPICH implementation of MPI, MPI_Allreduce does not scale well within a single 

node, i.e. its implementation for shared memory is not efficient, but it appears to scale on 

more nodes better than on Eagle, where we use OpenMPI v1.10.2. We intend to investigate 

the scalability of this particular function further in future steps of the benchmarking task.  

Through the examination of call times of functions in our profiles, we also notice that the 

function flee:flee:pick_conflict_location, which is non-scalable beyond a single 

node, calls the numpy function numpy.random.choice. When simulating 300K agents, this 

function is called 1000 times at each time step by every MPI process. While the function itself 

does not consume much of the execution time, in practice, this is an inherent problem of the 

way Flee is currently parallelized; Flee is parallelized across agents but not along locations, 

which requires replicated computations across its processes for location update functions. 

This overhead grows proportionally with the size of the location graph, and therefore may 

prove to be a more significant bottleneck than our results currently show, as they have been 

obtained with a limited size location graph. Flee parallelization will be re-visited in the next 

steps of the project, so we expect this possible scalability bottleneck to be addressed. 

Finally, regarding the scalability of different problem sizes, examination of call times of 

functions reveals fewer calls to the function flee:pflee:evolve for the larger problem size 

(900K agents), which is the reason for the equal execution times for the two problem sizes on 

4 nodes.  

3.2.2 Urban Pollution Pilot 

3.2.2.1 Current status of the workflow 

The core computational module of the Urban Pollution Pilot in its current status is the 

3DAirQualityPrediction component, which performs the multicomponent CFD simulation of 

air flows in cities. A detailed description of the workflow can be found in Deliverable 4.1. The 

workflow, as well as the particular component, has numerous dependencies on libraries and 

other software, which is either very complex to install and procure or not open-source.  

Within the activities of Task 3.1, the 3DAirQualityPrediction component is currently set up as 

a Singularity container and is operational on a virtual machine provided by PSNC. Native 

installation of the component on the two systems and therefore its benchmarking is currently 

in progress. 
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3.2.3 Social Networks Pilot 

3.2.3.1 Current status of the workflow 

The workflow of the social networks pilot is presented in Figure 3.8. Current effort is focused 

on the Validation component, which is responsible for computing the histogram of 

eigenvalues of the social network test graph that currently numbers 990,000 nodes. The 

component has extreme computational requirements and at the same time, occupies a very 

large amount of memory, thus requiring more than 100 nodes in order to execute. The code 

is written in C++, makes use of the PETSc and SLEPc libraries, and has two parts: one that 

performs an analysis step on the graph and one that performs factorization and computes the 

histogram. Currently, only the second part is parallelized using MPI and OpenMP. 

 
Figure 3.8: Social Networks Use Case - Workflow 

3.2.3.2 Preliminary benchmarking findings 

Preliminary runs of the Validation component on Hazelhen have focused on determining the 

right number of nodes and cores and an appropriate mix of MPI processes and OpenMP 

threads to achieve the seamless execution of the application for large graphs.  

Figure 3.9 presents scalability results for a graph of 700,000 nodes on Hazelhen, for varying 

numbers of nodes, cores and mix of MPI processes/OpenMP threads. The component does 

not benefit from additional nodes and/or cores, as, by decreasing the number of nodes from 

300 to 80, execution time for the factorization phase decreases. This reveals that the 
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Validation component is in fact communication-sensitive. However, using fewer nodes and 

cores, i.e. moving from 800 cores to 700 cores, can hurt the execution time; therefore, it is 

necessary to select the right configuration carefully.  

 

 
Figure 3.9: Scaling the Validation component on Hazelhen (HLRS) - Execution time for a graph with 700K 

nodes 

Figure 3.10 presents the best achieved execution time on Hazelhen for various problem 

sizes, alongside with the core count in use for each problem size. The graph shows that, in 

order to be able to solve the problem of computing the histogram of the eigenvalues for 

large graphs, an additional 25-50 cores are required for every additional 50K nodes of the 

graph.  

 
Figure 3.10: Scaling the problem size of the Validation component on Hazelhen (HLRS) - Execution time and 
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In order to get a better idea of the scalability of the Validation component, we use a smaller 

input graph of 50,000 nodes, which allows the execution of the component on a single node.  

Figure 3.11 shows the execution time on a single node of Hazelhen using various 

configurations of MPI processes and OpenMP threads. The factorization phase scales up to 24 

cores for all possible configurations, achieving however, at most a speedup of 8 on 24 cores. 

What is noteworthy is that the usage of more OpenMP threads is more beneficial against the 

usage of more MPI processes within the node, i.e. configurations with a single process and 

multiple OpenMP threads achieve lower execution times compared to configurations with 

multiple processes on Hazelhen.  

 
Figure 3.11: Scaling the Validation component on Hazelhen (HLRS) - Execution time for a graph with 50K 

nodes 

Figure 3.12 presents the same experiment on a single node on Eagle. Unlike Hazelhen, the 

lowest execution times are achieved with more MPI processes, rather than more threads. 

Moreover, we can observe extreme peaks in execution time for specific configurations, which 

use 14 OpenMP threads (1x14, 2x14). The lowest execution time occurs when using the full 

node with 28 MPI processes, with a speedup of 6.5 over serial execution.  

The scalability plots for the smaller graph does not offer sufficient insight as to what hinders 

higher speedups or why the two systems exhibit different scalability behaviour. Unfortunately, 

large scale runs on Eagle, using graphs of 400,000 nodes and 700,000 nodes, on similar 

configurations as on Hazelhen, with more than 30 nodes, all currently result in various errors 

that can be traced back to the PETSc library used by the module (segmentation faults, memory 

limits, InfiniBand timeouts). Further analysis of the module’s requirements in memory and 

appropriate configuration and tuning of the PETSc library is necessary before we further 

benchmark and profile the application on Eagle.  
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Figure 3.12: Scaling the Validation component on Eagle (PSNC) - Execution time for a graph with 50K nodes 
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4 Conclusions 

4.1 General remarks & lessons learned 

Deliverable D3.1 presents an initial definition of the HiDALGO benchmarking methodology. At 

this phase of the project, we have focused on the HiDALGO HPC infrastructure, and have 

targeted the compute-intensive parts of the HiDALGO pilots. We have based the HiDALGO 

benchmarking methodology on the existing HiDALGO infrastructure, a number of available 

tools, best practices drawn from our experience with HPC systems and applications, and the 

current status of the HiDALGO pilot applications. We have focused on defining a generic, 

systematic, reproducible, and interpretable methodology for collecting benchmarking 

information from the HiDALGO applications, and a systematic way of storing benchmarking 

results.  

We have applied the basic steps of this methodology in full for the Migration pilot and have 

kick-started the benchmarking efforts for the Air Pollution and Social Networks pilots. This 

initial experimentation and benchmarking have helped us identify various major and minor 

issues in procuring and/or benchmarking the HiDALGO pilots and has significantly impacted 

the definition of the HiDALGO methodology.  

4.2 Next steps 

Next steps regarding benchmarking within HiDALGO include, but are not limited to, the 

following: 

➢ Resolve pending issues with installation and procurement of all three HiDALGO pilots. 

➢ Apply the HiDALGO benchmarking methodology to the HPC modules of all three HiDALGO 

pilots across HiDALGO infrastructure. 

➢ Refine the HiDALGO benchmarking methodology to systematically collect more metrics 

of interest and gain further insight to the performance aspects of applications. 

➢ Extend the HiDALGO benchmarking methodology to include HPDA infrastructure and 

HPDA modules of the HiDALGO pilots. 

➢ Automate access to HiDALGO benchmarking results, exploiting the pre-defined repository 

structure. 
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