

This document is issued within the frame and for the purpose of the HiDALGO project. This project has received funding from the European
Union’s Horizon2020 Framework Programme under Grant Agreement No. 824115. The opinions expressed and arguments employed
herein do not necessarily reflect the official views of the European Commission.
The dissemination of this document reflects only the author’s view and the European Commission is not responsible for any use that may
be made of the information it contains. This deliverable is subject to final acceptance by the European Commission.
This document and its content are the property of the HiDALGO Consortium. The content of all or parts of this document can be used and
distributed provided that the HiDALGO project and the document are properly referenced.
Each HiDALGO Partner may use this document in conformity with the HiDALGO Consortium Grant Agreement provisions.

HiDALGO

D3.1 Report on Benchmarking and

Optimisation

Keywords:

High Performance Computing (HPC), Benchmarking, Profiling, Scalability

Document Identification

Status Final Due Date 31/03/2019

Version 1.0 Submission Date 01/04/2019

Related WP WP3 Document Reference D3.1

Related
Deliverable(s)

D4.1, D5.1 Dissemination Level (*) PU

Lead Participant ICCS Lead Author Nikela Papadopoulou

Contributors ICCS, PSNC, USTUTT,
BUL, PLUS, ECMWF

Reviewers Michael Gienger
(USTUTT)

Lara Lopez (ATOS)

Document name: D3.1 Report on Benchmarking and Optimisation Page: 2 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Document Information

Name Partner

Nikela Papadopoulou, Konstantinos Nikas, Petros Anastasiadis ICCS

Marcin Lawenda PSNC

Sergiy Gogolenko, Abhishek Abhishek USTUTT

Derek Groen BUL

Gregor Bankhamer PLUS

Milana Vuckovic ECMWF

Ver. Date Change editors Changes

0.1 31/01/2019 ICCS Created initial document, table of contents.

0.2 06/03/2019
ICCS, ECMWF,
PSNC, USTUTT

Added content in Sections 2, 3.

0.3 12/03/2019 ICCS, PLUS
Added content in Section 4, edited partners’
contributions (ECMWF, PSNC, USTUTT) in Sections 2,
3.

0.4 13/03/2019 ICCS
Edited content in Section 4, added content in Section
3.

0.5 18/03/2019 ICCS, BUL Added & reviewed content in Section 4.

0.6 19/03/2019 ICCS
Added content in Section 2, added content in Section
3.

0.7 20/03/2019 ICCS Pre-final version for the internal review

0.8 27/03/2019 ICCS Addressed comments from internal review.

1.0 27/03/2019 ICCS Final version.

List of Contributors

Document History

Document name: D3.1 Report on Benchmarking and Optimisation Page: 3 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Role Who (Partner short name) Approval Date

Deliverable leader Nikela Papadopoulou (ICCS) 28/03/2019

Quality manager Marcin Lawenda (PSNC) 28/03/2019

Project Coordinator Francisco Javier Nieto (ATOS) 29/03/2019

Quality Control

Document name: D3.1 Report on Benchmarking and Optimisation Page: 4 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information ... 2

Table of Contents ... 4

List of Tables ... 6

List of Figures .. 6

List of Acronyms ... 7

Executive Summary .. 8

1 Introduction ... 9

1.1 Purpose of the document .. 9

1.2 Relation to other project work ... 9

1.3 Structure of the document ... 9

2 HiDALGO Benchmarking .. 10

2.1 HiDALGO HPC/HPDA infrastructure ... 10

2.1.1 USTUTT infrastructure .. 10

2.1.2 PSNC infrastructure .. 10

2.1.3 ECMWF infrastructure .. 10

2.2 HiDALGO application analysis tools ... 11

2.2.1 HiDALGO application analysis targets .. 11

2.2.2 Description of pre-installed application analysis tools 12

2.2.3 HiDALGO storage infrastructure and tools .. 16

2.3 The HiDALGO benchmarking process .. 17

2.3.1 Repository structure ... 17

2.3.2 Reporting guidelines .. 18

2.3.3 Profiling guidelines ... 21

3 Initial Benchmarking Findings .. 22

3.1 HiDALGO HPC/HPDA infrastructure ... 22

3.1.1 USTUTT Benchmarking results ... 22

3.1.2 PSNC Benchmarking results ... 22

3.1.3 ECMWF Benchmarking results ... 23

Document name: D3.1 Report on Benchmarking and Optimisation Page: 5 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.2 HiDALGO Pilots ... 25

3.2.1 Migration Pilot .. 25

3.2.2 Urban Pollution Pilot .. 31

3.2.3 Social Networks Pilot .. 32

4 Conclusions .. 36

4.1 General remarks & lessons learned ... 36

4.2 Next steps ... 36

References .. 37

Document name: D3.1 Report on Benchmarking and Optimisation Page: 6 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Tables

Table 2.1: Pre-installed performance analysis tools on Hazelhen and Eagle ____________________________ 12

Table 3.1: HPL and HPCG reference performance results for Hazelhen (HLRS) ___________________________ 22

Table 3.2: HPL and HPCG reference performance results for Eagle (PSNC) ______________________________ 23

Table 3.3: Reference performance results for ECMWF infrastructure __________________________________ 25

List of Figures

Figure 2.1: Vampir GUI [8] __ 13

Figure 2.2 HiDALGO benchmarking repository structure __ 18

Figure 2.3 : Example of a CSV file __ 20

Figure 3.1: Scaling Flee on Hazelhen (HLRS) – Execution time __ 26

Figure 3.2: Scaling Flee on Hazelhen (HLRS) – Efficiency __ 27

Figure 3.3: Scaling Flee on Eagle (PSNC) - Execution time ___ 27

Figure 3.4: Scaling Flee on Eagle (PSNC) - Efficiency ___ 28

Figure 3.5: Call tree (number of calls) of Flee with 1 MPI process on Hazelhen using Cube. ________________ 29

Figure 3.6: Flee trace analysis with Vampir on Hazelhen, for 12, 24, 48 cores (left to right). _______________ 30

Figure 3.7: Flee trace analysis with Vampir on Eagle, for 14, 28, 56 cores (left to right).___________________ 30

Figure 3.8: Social Networks Use Case - Workflow ___ 32

Figure 3.9: Scaling the Validation component on Hazelhen (HLRS) - Execution time for a graph with 700K nodes

 ___ 33

Figure 3.10: Scaling the problem size of the Validation component on Hazelhen (HLRS) - Execution time and

required cores ___ 33

Figure 3.11: Scaling the Validation component on Hazelhen (HLRS) - Execution time for a graph with 50K nodes

 ___ 34

Figure 3.12: Scaling the Validation component on Eagle (PSNC) - Execution time for a graph with 50K nodes _ 35

file:///C:/ARI/Proyectos/2018/HIDALGO/0-Dossier%20de%20Proyecto/4.%20Doc.%20Tecnica%20-%20Resultados/Deliverables/WP3/D3.1/HiDALGO_D3.1%20Report%20on%20Benchmarking%20and%20Optimisation_v1.0.docx%23_Toc5010719

Document name: D3.1 Report on Benchmarking and Optimisation Page: 7 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation /
acronym

Description

Dx.y Deliverable number y belonging to WP x

EC European Commission

ENS Members’ Ensemble

HLRS High Performance Computing Center Stuttgart

HPC High Performance Computing

HPCG High Performance Conjugate Gradient

HPDA High Performance Data Analytics

HPL High Performance LINPACK

HRES High Resolution Weather Forecast

MPI Message Passing Interface

VM Virtual Machine

WP Work Package

Document name: D3.1 Report on Benchmarking and Optimisation Page: 8 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

Deliverable D3.1 defines the HiDALGO benchmarking methodology with a focus on the

HiDALGO HPC infrastructure. HiDALGO’s target is the definition of a generic, systematic,

reproducible, and interpretable methodology for collecting benchmarking information from

the HiDALGO applications, and a systematic way of storing benchmarking results. To achieve

that, this deliverable study the existing HiDALGO infrastructure, surveys available tools, and

draws from best practices for HPC systems and applications. It also presents the preliminary

effort to apply this methodology on the HiDALGO pilot applications.

The HiDALGO methodology has been fully applied on the Migration pilot. Similar efforts have

been kick-started for benchmarking the Air Pollution and Social Networks pilots as well. This

initial experimentation and benchmarking have helped identify various major and minor

issues in procuring and/or benchmarking the HiDALGO pilots, and has significantly impacted

the definition of the HiDALGO methodology.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 9 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

Deliverable 3.1 is prepared in the context of WP 3, which aims to identify the issues that

prevent software that deals with Global Challenges from achieving the highest possible

computation performance (exactable performance), as well as efficient and agile data

manipulation. This deliverable contributes to developing a benchmarking methodology to

assess the quality and performance of applications and obtaining detailed information on their

scalability behaviour and performance bottlenecks. This way, this deliverable contributes to

the project’s goals towards excellence in application design and optimization.

1.2 Relation to other project work

Deliverable 3.1 summarises initial findings regarding the performance and scalability of

HiDALGO applications, as these are described in Deliverable 4.1 (Initial Status of the Pilot

Applications), on the project’s HPC infrastructure, as described in Deliverable 5.1 (HiDALGO

System Environment). It drives future activities within WP 3 (Benchmarking and Co-design,

Scalability, Coupling) and within WP 4 (Implementation of the Pilot applications). It is the first

of a series of reports focusing on the benchmarking, implementation, optimisation, and

coupling technologies (D3.3, D3.4, and D3.5).

1.3 Structure of the document

The document is structured into 3 major chapters.

Chapter 2 presents the HiDALGO Benchmarking methodology. It describes existing

infrastructure, lists available tools for performance analysis, sets the aims and goals of the

benchmarking methodology and provides a description of the workflow for benchmarking

HiDALGO applications.

Chapter 3 presents the current status of deploying the HiDALGO Pilot applications on the

project’s HPC infrastructure together with initial findings on their scalability and profiling

results.

Chapter 4 concludes the document summarising key findings for each application and lessons

learned from this first initial effort towards setting up and implementing the HiDALGO

benchmarking methodology. Finally, it sets the next goals for benchmarking within HiDALGO.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 10 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2 HiDALGO Benchmarking

2.1 HiDALGO HPC/HPDA infrastructure

This section describes the infrastructure used for benchmarking in the context of this

deliverable. A more detailed description of the existing HiDALGO infrastructure can be found

in Deliverable 5.1 of WP 5. As the activities of Task 3.1 continue, benchmarking will be

extended to any infrastructure that will be made available to the project in the future.

2.1.1 USTUTT infrastructure

For Deliverable 3.1, we have utilized the Cray XC-40 Hazelhen, the flagship system at HLRS.

The system is a homogeneous supercomputer, built upon Intel Haswell Processors,

interconnected via the proprietary Cray Aries network in the dragonfly topology. Each node

consists of two 24-core processors and 128 GB of memory. The system ranks 20th on the

Top500 list and provides a peak performance of 7.4 PFlop/s. More information can be found

in Deliverable 5.1.

2.1.2 PSNC infrastructure

For Deliverable 3.1, we have utilized the CPU partition of Eagle, the supercomputer at PSNC,

which is based on Intel Haswell processors. Each node consists of two CPUs of 14 or 16 cores

each, with the memory per node varying between 64 GB and 256 GB. The nodes in Eagle are

interconnected with InfiniBand FDR. More information can be found in Deliverable 5.1.

2.1.3 ECMWF infrastructure

ECMWF will not provide direct access to its HPC facilities in the context of HiDALGO. Instead,

ECMWF is developing cloud environments co-hosted to the HPC, which will offer very fast and

easy access to HPC resources, such as disks. The description of ECMWF infrastructure and

weather forecast model used for benchmarking can be found in Deliverable 5.1.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 11 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2.2 HiDALGO application analysis tools

2.2.1 HiDALGO application analysis targets

The two systems described in Section 2.1, i.e. Hazelhen and Eagle, facilitate the performance

analysis of running applications with a wide set of tools. We summarise the list of pre-installed

tools in Table 2.1. Some of the tools are available on both HLRS and PSNC infrastructures,

some come with a particular license and are installed on one of the two systems, while others

are specific to the underlying architecture and are only available on the respective system.

Within HiDALGO we rely on tools that are readily available to each user or can be easily

installed by a user, to collect profiles and/or traces, which can then be analysed with various

tools that visualize profiles and traces. Our benchmarking process uses both profiles and

traces, the former collected through sampling and the latter collected through tracing.

Sampling collects data from the program counter at specific time intervals [10] to check how

much time was spent on a particular function [12][10]. Tracing collects performance data

during a particular event such as a function call [10]. However, the user needs to specify which

function to trace [12]. Tracing is usually a heavy process when the application is running for a

long time on large number of cores. On the other hand, sampling is mostly used to get an

initial overview of the work distribution [10].

To successfully achieve the project’s objectives, HiDALGO tools must be carefully selected

considering the following:

1. HiDALGO needs tools for profiling applications written in languages which are

emerging in the HPC community, including Python.

2. Portability of benchmarking and profiling tools across various architectures as well as

the usability of collected profiles and traces are of utmost importance.

Therefore, although we do make use of the pre-installed tools, we focus on tools that are

widely-available, supported by multiple architectures and vendors, maintained and up-to-

date, which provide information about the performance of applications that can be easily

interpreted and re-used in the future not only by the project but also by the HPC and HPDA

communities. We note that, although some tools are pre-installed on one or all HiDALGO

systems, we may rely on different versions of the tools for the analysis performed in this

deliverable.

Name Hazelhen Eagle Scope

PAPI Yes No Hardware counters measurement

Score-P Yes No Profiling and trace recording

Intel Advisor Yes Yes Design and optimization

Document name: D3.1 Report on Benchmarking and Optimisation Page: 12 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Table 2.1: Pre-installed performance analysis tools on Hazelhen and Eagle

2.2.2 Description of pre-installed application analysis tools

PAPI

PAPI aims to provide the tool designer and application engineer with a consistent interface

and methodology for use of the performance counter hardware found in most major

microprocessors. It enables software engineers to see the relation between software

performance and processor events in near real time [6].

➢ Link: http://icl.cs.utk.edu/papi/index.html

Score-P

Score-P is a software system that provides a measurement infrastructure for profiling, event

trace recording, and online analysis of HPC applications. Score-P supports multiple

programming paradigms, i.e., MPI, SHMEM, OpenMP, Pthreads, CUDA, OpenCL and OpenAcc.

The call-path profiles obtained with Score-P can be subsequently analysed with tools like CUBE

and TAU, while the traces, which follow the OTF2 format, can be analysed with Vampir and

Scalasca. In addition, Score-P supports recording hardware events, interfacing with common

tools like PAPI and PERF. While other tools are also suitable for collecting application profiles

and/or traces, e.g. Extrae, Score-P offers bindings for multiple languages, including Python,

with additional plugins (https://github.com/score-p). For the purposes of this deliverable, we

use Score-P v4.1, as it allows for Python bindings. Although local installation is simple, we will

opt for global installation on HiDALGO infrastructure in the future.

➢ Link: http://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-4.1/html/

(instructions for using Score-P with C/C++ applications)

➢ Link: https://github.com/score-p/scorep_binding_python

(instructions for using Score-P with Python applications)

Intel Advisor

Intel Advisor is a threading assistant for C, C++, C# and Fortran. It guides developers through

threading design, automating analyses required for fast and correct implementation. It helps

developers to add parallelism to their existing C/C++ or Fortran programs [4].

Vampir Yes Yes Trace visualization and analysis

Intel Inspector Yes Yes Performance optimization

CrayPAT Yes No Performance analysis

Intel VTune Yes Yes Performance analysis

Extrae Yes No Trace recording

Cube Yes No Profile visualization

Paraver Yes Yes Trace visualization

http://icl.cs.utk.edu/papi/index.html
https://github.com/score-p)
http://scorepci.pages.jsc.fz-juelich.de/scorep-pipelines/docs/scorep-4.1/html/
https://github.com/score-p/scorep_binding_python

Document name: D3.1 Report on Benchmarking and Optimisation Page: 13 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

➢ Link: https://software.intel.com/en-us/advisor

Vampir

The Vampir suite of tools offers scalable event analysis through a GUI which enables a fast and

interactive rendering of very complex performance data. The suite consists of VampirTrace,

Vampir and VampirServer. Ultra large data volumes can be analysed with a parallel version of

VampirServer, loading and analysing the data on the compute nodes with the GUI of Vampir

attached to it. Vampir is based on standard QT and works on desktop Unix workstations as

well as on parallel production systems [8].

Vampir consists of a GUI interface and an analysis backend as shown in Figure 2.1. In order to

use Vampir, you first need to generate a trace of the application, preferably

using VampirTrace. The generated Open Trace Format (OTF) trace consists of a file for each

MPI process (*.events.z), a trace definition file (*.def.z) and the master trace file (*.otf)

describing the other files [8].

Figure 2.1: Vampir GUI [8]

Using Vampire

To analyse small traces (< 500 MB of trace data), Vampir can be used standalone with the

default backend:

vampire

Using VampireServer

For large-scale traces (> 500MB and up to many thousand MPI processes), the parallel

VampirServer backend should be used (on compute nodes allocated through the queuing

system). The user can then attach to it using vampir:

https://software.intel.com/en-us/advisor

Document name: D3.1 Report on Benchmarking and Optimisation Page: 14 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

vampirserver start -n $((16*8 - 1))

On a new shell window, login to one of the login nodes of the system and open vampire:

vampire

Then, as shown in Figure 2.1, select “Remote open" and enter the host and port of the
VampirServer. Proceed and select the trace you want to open.

➢ Link: https://vampir.eu/

Intel Inspector

Intel Inspector is able to determine errors related to threading and memory early in the

development cycle to deliver reliable applications. It is a memory error and thread checker

tool for C, C++, C# .NET, and Fortran developers designing serial and parallel applications [5].

It performs dynamic analysis detecting intermittent and non-deterministic errors on varying

degrees of analysis. The tool detects memory leaks and problems and locates them. In terms

of threading analysis, it detects and locates deadlocks and data races.

Intel Inspector has two interfaces available: graphical and command line. To use Intel

Inspector, the code must be compiled with -g option to get debug information and preferably

with -O0 to ensure the debug information accurately reflects the source code location.

➢ Link: https://software.intel.com/en-us/intel-inspector

➢ Tutorial: https://software.intel.com/en-us/inspector-tutorial-windows-memory-cplusplus

CrayPAT

CrayPAT, offered by Cray, is a performance analysis tool for XC platforms [1]. It supports

Fortran, C, C++, UPC, OpenMP, Pthreads and SHMEM [12]. The CrayPAT tool set contains a

simplified and easy-to-use version of Perftools-lite which provides automated performance

analysis information [1]. CrayPAT supports two mechanisms to collect or measure

performance data, sampling and tracing.

Using CrayPAT

To use CrayPAT for automatic performance analysis, first a .apa file needs to be generated

using the commands below.

After building the application, the following command instruments the application:

pat_build –O apa a.out

The result of the above command will be an instrumented program file a.out+pat.

Now use the following command to run the application to get top time-consuming routines,

using sampling:

aprun ... a.out+pat

Running the +pat binary creates a .xf data file or a directory containing multiple .xf files. To

generate a single *.ap2 file, containing all performance data, use pat_report to combine

information from *.xf output.

https://vampir.eu/
https://software.intel.com/en-us/intel-inspector
https://software.intel.com/en-us/inspector-tutorial-windows-memory-cplusplus

Document name: D3.1 Report on Benchmarking and Optimisation Page: 15 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Intel VTune

Intel VTune Amplifier XE for Linux allows to analyse algorithm choices, identify serial and

parallel code bottlenecks, and understand how to better utilize available hardware resources

and thus speed up the application execution. Moreover, it reveals where the application is

spending time, identifies the most time-consuming program units (hotspots), and detects

hardware usage bottlenecks for a sample application. The profiler has a GUI interface which

presents analysis findings in a synthetized way what simplifies interpretation.

➢ Link: https://software.intel.com/en-us/vtune

Extrae

The Extrae library allows MPI communication events of a parallel program to be recorded as

a trace file [2]. Extrae can be configured through an XML file. To set up the environment for

the run use the following command:

export LD_PRELOAD=$EXTRAE_HOME/lib/libmpitrace.so

export EXTRAE_CONFIG_FILE=extrae.xml

And finally run the application as usual [2].

➢ Link: https://tools.bsc.es/extrae

Cube

Cube is used as performance report explorer for Scalasca and Score-P. It is a generic tool for

displaying a multi-dimensional performance space consisting of dimensions such as

performance metric, call path, and system resource [11].

➢ Link: http://scalasca.org/software/cube-4.x/documentation.html

Paraver

Based on an easy-to-use Motif GUI, Paraver was developed to respond to the need to have a

qualitative global perception of the application behaviour by visual inspection and then to be

able to focus on the detailed quantitative analysis of the problems. Paraver is able to perform

concurrent comparative analysis of several traces and provides a large amount of information

useful to improve the decisions on whether and where to invest the programming effort to

optimize an application [7].

Customizable semantics of the visualized information facilitates extending the tool to support

new performance data or new programming models, while sharing views of the trace file

enables cooperative work. Another degree of freedom is the building of derived metrics which

are not hardwired on the tool but programmed. The tool offers a large set of time functions,

a filter module and a mechanism to combine two time lines.

➢ Link: https://tools.bsc.es/paraver

➢ GitHub: https://github.com/bsc-performance-tools/wxparaver

https://software.intel.com/en-us/vtune
https://tools.bsc.es/extrae
http://scalasca.org/software/cube-4.x/documentation.html
https://tools.bsc.es/paraver
https://github.com/bsc-performance-tools/wxparaver

Document name: D3.1 Report on Benchmarking and Optimisation Page: 16 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2.2.3 HiDALGO storage infrastructure and tools

In order to establish collaborative work on the project sources, HLRS provide access to the

installation of the FusionForge at https://projects.hlrs.de. FusionForge is a web-based

project management and collaboration environment, which includes services for project

hosting, version control (Subversion, Git, etc.), code reviews, ticketing (issues, support),

release management, continuous integration, and messaging.

In order to use personal Fusion Forge services, the user should login to

https://projects.hlrs.de and select the tab "My Page". In particular, this tab contains subtabs

"Personal page", "Account", and "Register Project". Subtab "Register

Project" allows to request for new project repository. While registering the new repository,

the user must specify project full name, project purpose and summary, project public

description, and preferable source control manager (SCM). The user can select between Git,

Subversion, Mercurial, or datastore without SCM. Subtab "Account" serves for

managing user account (change password, set up language, timezone, theme, country, email

address, etc.). Subtab "Personal page" usually contains general information about projects

where the user participates in. Its appearance can be easily tuned by adding widgets and

customizing layouts. From this subtab, the user can get access to the project pages.

Each project pages contains tabs "Summary", "Admin" (if the user has admin permissions for

the project), "SCM" and others. Tab "SCM" assembles information about project repository:

path for cloning, aggregate data about repository history, a web interface for manipulating

the repository (e.g., gate), etc. Tab "Summary" holds project-related widgets that can be

selected by user. The default set of widgets includes project description, references to the

latest file releases, quick access to public services of the project (Home Page, Project Files,

Mailing Lists, Surveys, SCM repository), and list of project members. Users with administrative

rights have access to "Admin" tab. This tab allows to update project information, update

project users (add/remove users, change their roles, etc.), view basic project statistics (e.g.,

see screenshot Fig. 1 with the bar plot of commits history).

In the context of HiDALGO WP 3, we intend to create hidalgo-wp3 project with Git

repository that stores relevant information about code optimization and benchmarking. It can

be further cloned with:

git clone https://scm.projects.hlrs.de/authscm/sgogolenko/git/hidalgo-wp3/hidalgo-wp3.git

Pushing new commits to this repository usually consists of the following steps:

git commit -m"[commit-tag] Commit short description"

git pull --rebase

git push

https://projects.hlrs.de/
https://projects.hlrs.de/

Document name: D3.1 Report on Benchmarking and Optimisation Page: 17 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2.3 The HiDALGO benchmarking process

2.3.1 Repository structure

As it is important to track changes in the status of applications and correlate collected

measurements with scalability results, HiDALGO has defined the following structure for the

shared repository:

➢ Each application has its own directory in the hidalgo-wp3 project repository

(/RefugeeMigration, /UrbanPollution, /SocialMedia).

➢ For each application, a subdirectory is created for each different system (e.g.

/RefugeeMigration/Hazelhen_HLRS, /RefugeeMigration/Eagle_PSNC)

➢ Separate directories are created to denote different configurations in terms of compiler

versions, library versions, etc. For example, if an application is benchmarked with two

different MPI versions on the same system, then two different directories are created.

We use incremental numbering for different configurations (e.g.

/RefugeeMigration/Hazelhen_HLRS/conf00,

/RefugeeMigration/Hazelhen_HLRS/conf01).

Each of these directories stores the following:

▪ A conf.yaml file which effectively describes the system configuration. It lists the

versions of used compilers and libraries, as well as any other configuration options,

e.g. runtime parameters for a library.

▪ A set of files listing the parameters together with their values used for the different

executions of the application. The files are named param_N.yaml, where N denotes

the N-th execution of the application.

▪ Sets of measurements for the whole application or for one of its components using

the CSV format (.csv files). The name of each CSV file follows a specific convention

for each component of each application. Specifically, it must include the application

name, the component name, the name of the xml file that contains the configuration

parameters for the application and/or the specific component, and a timestamp.

e.g. AppName-AppComponent-param_N-YYMMDD_hhmm.csv

▪ Sets of profiling results for the whole application or one of its components. Each set

is stored in a timestamped subdirectory using the naming convention profiling-

YYMMDD_hhmm.

Each of these subdirectories contains:

➢ A file holding the configuration parameters used for the profiling of the specific

component or the application, named AppName-AppComponent-

param.yaml.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 18 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

➢ One or more directories with profiles or traces for the application or the

particular component, for a number of nodes, cores, and processes per node.

The name of each one of these directories follows a specific convention. In

particular, it starts with a prefix (profile- for profiles or trace- for traces),

which is then followed by the execution configuration. For example, for a trace

collected on n nodes, c cores per node, p MPI processes and d threads per

process, the name of the directory would be: trace-n_nodes-c_cores-

p_procs-d_threads.

Figure 2.2 illustrates the HiDALGO benchmarking repository structure, showcasing the

directories and files stored for executing and profiling the Flee component of the Migration

pilot at Hazelhen.

Figure 2.2 HiDALGO benchmarking repository structure

2.3.2 Reporting guidelines

Each major software component of an application benchmarked and profiled by HiDALGO, is

expected to be able to report its own timing results and any other metrics specific to the

application, both for the component as a whole and for critical kernels or phases within the

component (e.g. startup/initialisation phase, iterative phases, etc.). All the results (time and

other metrics) are reported in a CSV file.

To facilitate the storing, tracking and analysis of results, HiDALGO has defined a specific

structure that must be followed by each CSV results file. Specifically, each file is structured as

follows:

➢ The first column(s) specify the problem size and/or instantiation parameters of the

problem.

➢ The next three columns refer to the number of nodes (“Nodes”), number of cores per

node (“Cores/Node”), number of MPI processes used (“MPI_Procs”). If the

HiDALGO/

RefugeeMigration/

Hazelhen_HLRS/

conf00/

RefugeeMigration-Flee-
param_1-20190319_1720.csv

RefugeeMigration-Flee-
param_1-20190320_0930.csv

conf.yaml param_1.yaml profiling_20190320-1000/

RefugeeMigration-Flee-
param.yaml

profile-1_nodes-
24_cores-24_procs.cubex

trace-1_nodes-24_cores-
24-procs/

Eagle_PSNC/

AirPollution/ SocialMedia/

Document name: D3.1 Report on Benchmarking and Optimisation Page: 19 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

component is parallelized using hybrid MPI+OpenMP, they are followed by a fourth

column that refers to the number of threads per MPI process (“Threads”).

➢ A set of columns for each phase of the component we need to collect measurements

for. The columns are named following a specific convention. In particular, their names

start with a prefix, which is the name of the phase (custom to the application

component), followed by the name of the metric. For example, for phase “PhaseX” of a

component, the following columns are created: “PhaseX_iterations”,

“PhaseX_time”, “PhaseX_metric1”, “PhaseX_metric2”, etc. These columns

denote the number of iterations for the particular phase, its execution time, and any

other metrics collected for this particular phase.

➢ The last columns include the total execution time of the component and aggregate

metrics. These columns are named using the prefix “Total_”.

The proposed template for reporting is easily extensible with additional application phases

and metrics. In case of variability in runtimes or other metrics between multiple runs, the

template can be extended with a column denoting the number of runs (“Runs”), while, for

each metric measurement, the mean observed value and its confidence interval is reported

instead. For example, instead of a single column named “PhaseX_time”, we use multiple

columns named “PhaseX_time_mean”, “PhaseX_time_CI-cl”, where cl is the

confidence level for the confidence interval.

Figure 2.3 showcases the CSV file that stores the results for the Validation module of the Social

Networks pilot. For a specific problem size, the application has been executed 4 times, each

one using a different configuration, i.e. different nodes, cores, MPI processes and threads. The

Validation module has 3 different phases, namely Metis, Analysis and Factorization. For each

phase the CSV file holds its iterations and the time it took to be executed. Finally, the CSV file

reports the total execution time of each run.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 20 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 2.3 : Example of a CSV file

Document name: D3.1 Report on Benchmarking and Optimisation Page: 21 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

2.3.3 Profiling guidelines

In order to define a uniform methodology for profiling applications in the context of HiDALGO,

we rely on Score-P.

More specifically, to profile HPC components of applications, we use Score-P to collect either

application profiles or application traces. The collected results are stored in the repository as

described in Sections 2.3.1 and 2.3.2. Score-P profiles and traces can then be analysed with

different tools. More importantly, Score-P allows us to collect any required information of an

application in the same format, which can later be re-used or compared across systems and/or

applications. Score-P collects timing measurements and call trees for parallel applications at

profiling mode, while it captures all application events when in tracing mode.

Score-P primarily targets MPI. It can profile or record events for a full application, but also

allows for instrumentation and measurement of specific parts of the code. Its interface with

PAPI and/or perf allows also for collection of performance counters measurements for a

specific phase of an application. Finally, it also allows for memory recording and I/O recording.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 22 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3 Initial Benchmarking Findings

3.1 HiDALGO HPC/HPDA infrastructure

As a reference point for the HiDALGO HPC infrastructure (Hazelhen and Eagle), Deliverable

D3.1 reports the benchmarking results for the HPL and HPCG benchmarks, both on full systems

and on single nodes.

These two benchmarks act as indicators of diverse performance properties. The HPL

benchmark, having O(n) operational intensity, indicates the peak performance of a system in

heavily computationally-intensive applications. On the other hand, the HPCG benchmark,

having O(1) operational intensity, namely a very low flop-per-byte ration, indicates the

performance of a system when the memory subsystem is stressed. In addition, the HPCG

benchmark exhibits complex communication patterns and thus is capable of exposing

performance bugs in common communication operations at large scale.

Regarding ECMWF infrastructure, which as explained in Section 2.1.3 has a different operation

than other two supercomputing centres, Deliverable D3.1 reports I/O performance results

specific to the high-resolution weather forecast (HRES) and the ensemble of 15-day forecasts

(ENS).

3.1.1 USTUTT Benchmarking results

Table 3.1 presents HPL and HPCG reference results on Hazelhen, on single node and on the

full system. HPL results show the peak node and system performance, while HPCG results

show the system performance under a memory-bound workload with significantly higher

communication overheads. On a single node, HPCG achieves about 17% of the HPL

performance, and about 14% in parallel efficiency on the full system.

Benchmark Problem size Nodes Cores/Node
MPI processes/

Node
Memory/

Node
Performance

HPL 20000 1 24 (2x12) 1 128GB 777.233 GFlop/s

HPCG Global: 192x192x192
Local: 192x192x192

1 24 (2x12) 1 128GB 131.322GFlop/s

HPL 4973760 7712 24 (2x12) 2 128GB 5640.2TFlop/s

HPCG Global: 3072 x 5952 x 5952

Local: 192 x 192 x 192
7688 24 (2x12) 2 128GB 138 TFlop/s

Table 3.1: HPL and HPCG reference performance results for Hazelhen (HLRS)

3.1.2 PSNC Benchmarking results

Table 3.2 presents HPL and HPCG reference results on Eagle, on a single node and on the full

system. For Eagle, HPL performance is slightly higher on a single node compared to Hazelhen,

Document name: D3.1 Report on Benchmarking and Optimisation Page: 23 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

due to the 4 additional cores per node. HPCG achieves about 5% of the HPL performance,

indicating that a node on Eagle is more sensitive to the performance of memory-bound

workloads compared to a node in Hazelhen. The exact problem size for HPCG could not be

verified for Eagle, so we cannot make any assumptions about the scalability of the

interconnection network at this time.

Benchmark Problem size Nodes Cores/Node
MPI processes/

Node
Memory/

Node
Performance

HPL 120960 1 28 (2x24) 28 128GB 894.7 GFlop/s

HPCG Local: 16x16x16 1 28 (2x24) 28 128GB 44.4102GFlop/s

HPL 2739840 1233 32984 2 64GB/128GB/256GB 1013.72TFlop/s

HPCG unknown 1233 32984 2 64GB/128GB/256GB 8.53 TFLop/s

Table 3.2: HPL and HPCG reference performance results for Eagle (PSNC)

3.1.3 ECMWF Benchmarking results

The ECMWF model produces raw model output for global fields in the spectral space

(spherical harmonic fields) and physical space (reduced Gaussian grid, reduced lat/lon). These

fields still need further post-processing to create user-specific weather products. Member

states and clients very often require specific tailored products, e.g. temperature in the whole

country of Hungary or precipitation on a coarse lat-lon grid. Product Generation application

applies users’ requirements to raw model output to get user data fields, called products.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 24 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

 summarizes the reference performance results from production runs on the ECMWF

infrastructure. The HRES column refers to the high-resolution forecast and the ENS column

refers to the ensemble of forecasts.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 25 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Metrics HRES ENS

Total

Number of fields read 1,532,803 24,552,389

Number of products written 22,875,147 114,909,155

Writing volume 14.11 TB 11.13 TB

Writing rate 648.6 MB/s 393.4 MB/s

Main model run

Number of fields read 488,336 9,432,089

Number of products written 11,614,366 65,343,476

Writing volume 9.05 TB 9.15 TB

Writing rate 625.0 MB/s 506.0 MB/s

Boundary-conditions run

Number of fields read 1,044,467 15,120,300

Number of products written 11,260,781 49,565,679

Writing volume 5.06 TB 1.98 TB

Writing rate 672.2 MB/s 280.7 MB/s

Table 3.3: Reference performance results for ECMWF infrastructure

3.2 HiDALGO Pilots

3.2.1 Migration Pilot

3.2.1.1 Current status of the workflow

A detailed description of the Migration pilot workflow can be found in Deliverable 4.1. Its core

component is the Flee simulation framework. Flee is an agent-based modelling framework

that simulates the movement of individuals across geographical locations. The code is written

in Python and parallelized with MPI, using the py4mpi module [9]. A public release of the code

is available on github1.

For this deliverable, we benchmark the parallel version of the code using sample input data,

which contain 2 conflict zones, 2 towns and 3 camps. The simulation starts with a configurable

number of initial agents/refugees per campus. As the simulation progresses in time (also

1 https://github.com/djgroen/flee-release

https://github.com/djgroen/flee-release

Document name: D3.1 Report on Benchmarking and Optimisation Page: 26 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

configurable number of time steps), at every time step, new conflict zones and closures are

introduced and refugee movements are simulated accordingly on the network graph. In

addition, the test inserts an additional 1000 agents per time step. This particular execution

scenario is not I/O-intensive, as conflict and refugee data is loaded in advance of the main

simulation.

3.2.1.2 Preliminary benchmarking findings

We present scalability results for the parallel test on both Hazelhen and Eagle, for up to 4

compute nodes, scaling up the number of MPI processes. We use 120-time steps for the

simulation and we run tests with 300K agents (100K agents per campus) and 900K agents

(300K agents per campus). The execution time is measured using the GNU time command

and refers to the full simulation, including starting up the MPI processes and the initialization

of the agents. We did not scale the application on more nodes, since our preliminary results,

shown below, already result in low execution times for the selected parallel test and suffice

to expose the scalability behaviour of the application.

Figure 3.1 (both axes in logarithmic scale) and Figure 3.2 show the results of scaling Flee on

Hazelhen for up to 4 nodes (96 cores). Flee scales up well within a single node (up to 24 cores)

for both problem sizes; however, its parallel efficiency is reduced when scaled to more nodes.

In particular, the achieved efficiency is 64% for 24 cores (single node) for the larger problem

size (900K agents), while being only 39% for 96 cores (4 nodes). For the smaller problem size,

efficiency is consistently lower across all core counts.

Figure 3.1: Scaling Flee on Hazelhen (HLRS) – Execution time

1

10

100

1000

1 2 4 8 16 32 64 128

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Cores

300K - Hazelhen 900K - Hazelhen

Document name: D3.1 Report on Benchmarking and Optimisation Page: 27 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3.2: Scaling Flee on Hazelhen (HLRS) – Efficiency

Similar behaviour is observed on Eagle, as illustrated by Figure 3.3 (both axes in logarithmic

scale) and Figure 3.4¡Error! No se encuentra el origen de la referencia.. For a single node (28

cores), parallel efficiency for the larger problem size is 67%, while dropping to 28% for 4 nodes

(112 cores). What is noteworthy is that on Eagle, parallel efficiency is almost equal for the two

different problem sizes for up to 24 cores. In addition, on Hazelhen, there appears to be an

increasing difference in parallel efficiency between the two problem sizes, while on Eagle, the

difference seems to remain almost constant as the core count increases. Those differences

can be further investigated through profiling of the application.

Figure 3.3: Scaling Flee on Eagle (PSNC) - Execution time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120

Ef
fi

ci
e

n
cy

Cores

300K - Hazelhen 900K - Hazelhen

1

10

100

1000

1 2 4 8 16 32 64 128

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Cores

300K - Eagle 900K - Eagle

Document name: D3.1 Report on Benchmarking and Optimisation Page: 28 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.2.1.3 Profiling findings

In order to further understand the scalability problems of Flee, we have profiled the parallel

test for 300K agents on both systems, using Score-P to collect both a profile and a trace of the

application. We use Cube to visualise and analyse application profiles and Vampir to visualise

and analyse the OTF2 traces. We have collected traces for 1 process, half a node (12 cores on

Hazelhen, 14 cores on Eagle), full node (24 cores on Hazelhen, 28 cores on Eagle) and 2 nodes.

By analysing the profile for a single process on Hazelhen using Cube (Figure 3.5), we have

identified that Flee in this execution scenario calls the MPI_Allreduce functions an

excessive amount of times, i.e. almost 6000 times. This is actually due to the parallelization of

the application: a call to MPI_Allreduce is performed at every time step, for each location

and link in the simulation, in order for all processes to have a global view of the number of

simulated agents at any time. As for larger location graphs, this may result in an excessive

number of calls, a more efficient rearrangement of data, combined with merging these calls,

could result in improved performance.

0

0,2

0,4

0,6

0,8

1

1,2

0 20 40 60 80 100 120

Ef
fi

ci
e

n
cy

Cores

300K - Eagle 900K - Eagle

Figure 3.4: Scaling Flee on Eagle (PSNC) - Efficiency

Document name: D3.1 Report on Benchmarking and Optimisation Page: 29 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3.5: Call tree (number of calls) of Flee with 1 MPI process on Hazelhen using Cube.

As MPI_Allreduce is an intensive all-to-all communication function, we expect it to be a

major bottleneck for scaling Flee on high numbers of nodes. A further analysis of the traces of

the application on Hazelhen using Vampir is shown in Figure 3.6, which visualizes the

accumulated exclusive time per function. The traces show that MPI_Allreduce becomes the

third most time-consuming function when already filling a single node on Hazelhen.

The two most time-consuming functions, namely flee:pflee:evolve and

flee:flee:selectRoute scale linearly up to 48 cores (the accumulated exclusive time

remains constant). On the contrary, the time consumed in the MPI_Allreduce function

grows significantly even within a single node, thus impeding the scalability of the application.

Another interesting finding is that the function flee:flee:pick_conflict_location

does not scale linearly, becoming the fourth most time-consuming function when utilizing 48

cores.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 30 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3.6: Flee trace analysis with Vampir on Hazelhen, for 12, 24, 48 cores (left to right).

Figure 3.7: Flee trace analysis with Vampir on Eagle, for 14, 28, 56 cores (left to right).

Document name: D3.1 Report on Benchmarking and Optimisation Page: 31 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Our analysis of traces on Eagle reveals a similar behaviour. Regarding the computational parts,

this is expected, as the two systems utilise similar types of compute nodes. However, both

the interconnection network and the MPI version used are different, affecting the

communication parts of the application. As shown in Figure 3.7, MPI_Allreduce consumes

a significant amount of time even for 14 processes on a single node of Eagle, and it does not

scale at all outside of a single node, as indicated by the increase in time from 28 to 56 cores.

This is an important point of comparison between the two systems: on Hazelhen, using the

Cray-MPICH implementation of MPI, MPI_Allreduce does not scale well within a single

node, i.e. its implementation for shared memory is not efficient, but it appears to scale on

more nodes better than on Eagle, where we use OpenMPI v1.10.2. We intend to investigate

the scalability of this particular function further in future steps of the benchmarking task.

Through the examination of call times of functions in our profiles, we also notice that the

function flee:flee:pick_conflict_location, which is non-scalable beyond a single

node, calls the numpy function numpy.random.choice. When simulating 300K agents, this

function is called 1000 times at each time step by every MPI process. While the function itself

does not consume much of the execution time, in practice, this is an inherent problem of the

way Flee is currently parallelized; Flee is parallelized across agents but not along locations,

which requires replicated computations across its processes for location update functions.

This overhead grows proportionally with the size of the location graph, and therefore may

prove to be a more significant bottleneck than our results currently show, as they have been

obtained with a limited size location graph. Flee parallelization will be re-visited in the next

steps of the project, so we expect this possible scalability bottleneck to be addressed.

Finally, regarding the scalability of different problem sizes, examination of call times of

functions reveals fewer calls to the function flee:pflee:evolve for the larger problem size

(900K agents), which is the reason for the equal execution times for the two problem sizes on

4 nodes.

3.2.2 Urban Pollution Pilot

3.2.2.1 Current status of the workflow

The core computational module of the Urban Pollution Pilot in its current status is the

3DAirQualityPrediction component, which performs the multicomponent CFD simulation of

air flows in cities. A detailed description of the workflow can be found in Deliverable 4.1. The

workflow, as well as the particular component, has numerous dependencies on libraries and

other software, which is either very complex to install and procure or not open-source.

Within the activities of Task 3.1, the 3DAirQualityPrediction component is currently set up as

a Singularity container and is operational on a virtual machine provided by PSNC. Native

installation of the component on the two systems and therefore its benchmarking is currently

in progress.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 32 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

3.2.3 Social Networks Pilot

3.2.3.1 Current status of the workflow

The workflow of the social networks pilot is presented in Figure 3.8. Current effort is focused

on the Validation component, which is responsible for computing the histogram of

eigenvalues of the social network test graph that currently numbers 990,000 nodes. The

component has extreme computational requirements and at the same time, occupies a very

large amount of memory, thus requiring more than 100 nodes in order to execute. The code

is written in C++, makes use of the PETSc and SLEPc libraries, and has two parts: one that

performs an analysis step on the graph and one that performs factorization and computes the

histogram. Currently, only the second part is parallelized using MPI and OpenMP.

Figure 3.8: Social Networks Use Case - Workflow

3.2.3.2 Preliminary benchmarking findings

Preliminary runs of the Validation component on Hazelhen have focused on determining the

right number of nodes and cores and an appropriate mix of MPI processes and OpenMP

threads to achieve the seamless execution of the application for large graphs.

Figure 3.9 presents scalability results for a graph of 700,000 nodes on Hazelhen, for varying

numbers of nodes, cores and mix of MPI processes/OpenMP threads. The component does

not benefit from additional nodes and/or cores, as, by decreasing the number of nodes from

300 to 80, execution time for the factorization phase decreases. This reveals that the

Document name: D3.1 Report on Benchmarking and Optimisation Page: 33 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Validation component is in fact communication-sensitive. However, using fewer nodes and

cores, i.e. moving from 800 cores to 700 cores, can hurt the execution time; therefore, it is

necessary to select the right configuration carefully.

Figure 3.9: Scaling the Validation component on Hazelhen (HLRS) - Execution time for a graph with 700K

nodes

Figure 3.10 presents the best achieved execution time on Hazelhen for various problem

sizes, alongside with the core count in use for each problem size. The graph shows that, in

order to be able to solve the problem of computing the histogram of the eigenvalues for

large graphs, an additional 25-50 cores are required for every additional 50K nodes of the

graph.

Figure 3.10: Scaling the problem size of the Validation component on Hazelhen (HLRS) - Execution time and

required cores

0

2000

4000

6000

8000

10000

12000

14000

300x5 240x5 200x5 180x5 160x5 80x10 70x10

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

MPI processes x OpenMP threads

t_analysis t_factorization

0

200

400

600

800

1000

1200

1400

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200000 400000 600000 800000 1000000 1200000

C
o

re
s

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

Problem size

Execution time Cores

Document name: D3.1 Report on Benchmarking and Optimisation Page: 34 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

In order to get a better idea of the scalability of the Validation component, we use a smaller

input graph of 50,000 nodes, which allows the execution of the component on a single node.

Figure 3.11 shows the execution time on a single node of Hazelhen using various

configurations of MPI processes and OpenMP threads. The factorization phase scales up to 24

cores for all possible configurations, achieving however, at most a speedup of 8 on 24 cores.

What is noteworthy is that the usage of more OpenMP threads is more beneficial against the

usage of more MPI processes within the node, i.e. configurations with a single process and

multiple OpenMP threads achieve lower execution times compared to configurations with

multiple processes on Hazelhen.

Figure 3.11: Scaling the Validation component on Hazelhen (HLRS) - Execution time for a graph with 50K

nodes

Figure 3.12 presents the same experiment on a single node on Eagle. Unlike Hazelhen, the

lowest execution times are achieved with more MPI processes, rather than more threads.

Moreover, we can observe extreme peaks in execution time for specific configurations, which

use 14 OpenMP threads (1x14, 2x14). The lowest execution time occurs when using the full

node with 28 MPI processes, with a speedup of 6.5 over serial execution.

The scalability plots for the smaller graph does not offer sufficient insight as to what hinders

higher speedups or why the two systems exhibit different scalability behaviour. Unfortunately,

large scale runs on Eagle, using graphs of 400,000 nodes and 700,000 nodes, on similar

configurations as on Hazelhen, with more than 30 nodes, all currently result in various errors

that can be traced back to the PETSc library used by the module (segmentation faults, memory

limits, InfiniBand timeouts). Further analysis of the module’s requirements in memory and

appropriate configuration and tuning of the PETSc library is necessary before we further

benchmark and profile the application on Eagle.

0

5

10

15

20

25

30

35

40

45

50

1
x1

1
x2

1
x4

1
x6

1
x8

1
x1

2

1
x1

6

1
x2

4

2
x1

2
x2

2
x4

2
x6

2
x8

2
x1

2

4
x1

4
x2

4
x4

4
x6

6
x1

6
x2

6
x4

1
2

x1

1
2

x2

1
6

x1

2
4

x1

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

MPI processes x OpenMP threads

t_analysis t_factorization

Document name: D3.1 Report on Benchmarking and Optimisation Page: 35 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

Figure 3.12: Scaling the Validation component on Eagle (PSNC) - Execution time for a graph with 50K nodes

0

10

20

30

40

50

60

70

80

90

1
x1

1
x2

1
x4

1
x7

1
x1

4

1
x2

8

2
x1

2
x2

2
x4

2
x7

2
x1

4

4
x1

4
x2

4
x4

4
x7

7
x1

7
x2

7
x4

1
4

x1

1
4

x2

2
8

x1

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

MPI processes x OpenMP threads

t_analysis t_factorization

Document name: D3.1 Report on Benchmarking and Optimisation Page: 36 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

4 Conclusions

4.1 General remarks & lessons learned

Deliverable D3.1 presents an initial definition of the HiDALGO benchmarking methodology. At

this phase of the project, we have focused on the HiDALGO HPC infrastructure, and have

targeted the compute-intensive parts of the HiDALGO pilots. We have based the HiDALGO

benchmarking methodology on the existing HiDALGO infrastructure, a number of available

tools, best practices drawn from our experience with HPC systems and applications, and the

current status of the HiDALGO pilot applications. We have focused on defining a generic,

systematic, reproducible, and interpretable methodology for collecting benchmarking

information from the HiDALGO applications, and a systematic way of storing benchmarking

results.

We have applied the basic steps of this methodology in full for the Migration pilot and have

kick-started the benchmarking efforts for the Air Pollution and Social Networks pilots. This

initial experimentation and benchmarking have helped us identify various major and minor

issues in procuring and/or benchmarking the HiDALGO pilots and has significantly impacted

the definition of the HiDALGO methodology.

4.2 Next steps

Next steps regarding benchmarking within HiDALGO include, but are not limited to, the

following:

➢ Resolve pending issues with installation and procurement of all three HiDALGO pilots.

➢ Apply the HiDALGO benchmarking methodology to the HPC modules of all three HiDALGO

pilots across HiDALGO infrastructure.

➢ Refine the HiDALGO benchmarking methodology to systematically collect more metrics

of interest and gain further insight to the performance aspects of applications.

➢ Extend the HiDALGO benchmarking methodology to include HPDA infrastructure and

HPDA modules of the HiDALGO pilots.

➢ Automate access to HiDALGO benchmarking results, exploiting the pre-defined repository

structure.

Document name: D3.1 Report on Benchmarking and Optimisation Page: 37 of 37

Reference: D3.1 Dissemination: PU Version: 1.0 Status: Final

References

[1] "CrayPAT". Nersc.Gov, 2019,http://www.nersc.gov/users/software/performance-and-debugging-

tools/craypat/. Accessed on Feb 2019.

[2] "Extrae - HLRS Platforms". Wickie.Hlrs.De,

2019,https://wickie.hlrs.de/platforms/index.php/Extrae. Accessed Feb 2019.

[3] "Extrae". Barcelona Supercomputing Center, 2019,https://tools.bsc.es/extrae.Accessed on Feb

2019.

[4] "Home | Intel® Advisor". Software.Intel.Com, 2019,https://software.intel.com/en-us/advisor.

Accessed on Feb 2019.

[5] "Intel® Inspector". Software.Intel.Com, 2019,https://software.intel.com/en-us/intel-inspector.

Accessed on Feb 2019.

[6] "PAPI". Icl.Cs.Utk.Edu, 2019, http://icl.cs.utk.edu/papi/index.html. Accessed on Feb 2019.

[7] "Paraver: A Flexible Performance Analysis Tool". Barcelona Supercomputing Center,

2019,https://tools.bsc.es/paraver. Accessed on Feb 2019.

[8] "Vampir - HLRS Platforms". Wickie.Hlrs.De,

2019,https://wickie.hlrs.de/platforms/index.php/Vampir. Accessed on Feb 2019.

[9] Groen, D., 2018, June. Development of a multiscale simulation approach for forced migration.
In International Conference on Computational Science (pp. 869-875). Springer, Cham.

[10] S. Andersson, "Using Perftools for threaded and hybrid codes", HLRS, Stuttgart, 2011.

[11] Saviankou, Pavel. "Cube 4.X Download". Scalasca.Org, 2019,http://scalasca.org/software/cube-

4.x/download.html. Accessed on Feb 2019.

[12] W. Yang, "Using CrayPat", NERSC Oakland Scientific Facility, 2012.

http://www.nersc.gov/users/software/performance-and-debugging-tools/craypat/
http://www.nersc.gov/users/software/performance-and-debugging-tools/craypat/
https://wickie.hlrs.de/platforms/index.php/Extrae
https://tools.bsc.es/extrae
https://software.intel.com/en-us/advisor
https://software.intel.com/en-us/intel-inspector
http://icl.cs.utk.edu/papi/index.html
https://tools.bsc.es/paraver
https://wickie.hlrs.de/platforms/index.php/Vampir
http://scalasca.org/software/cube-4.x/download.html
http://scalasca.org/software/cube-4.x/download.html

